两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

抽屜原理教學設計優秀

時間:2024-10-26 10:44:16 教學設計 我要投稿

抽屜原理教學設計優秀

  作為一名為他人授業解惑的教育工作者,常常要寫一份優秀的教學設計,借助教學設計可以更大幅度地提高學生各方面的能力,從而使學生獲得良好的發展。那么寫教學設計需要注意哪些問題呢?下面是小編整理的抽屜原理教學設計優秀,歡迎閱讀與收藏。

抽屜原理教學設計優秀

抽屜原理教學設計優秀1

  教學目標:

  1.使學生能理解抽取問題中的一些基本原理,并能解決有關簡單的問題。

  2.體會數學與日常生活的聯系,了解數學的價值,增強應用數學的意識。

  教學重點:

  抽取問題。

  教學難點:

  理解抽取問題的基本原理。

  教學過程:

  一、創設情境,復習舊知

  1、出示復習題:

  師:老師這兒有一個問題,不知道哪位同學能幫助解答一下?

  2、課件出示:把3個蘋果放進2個抽屜里,總有一個抽屜至少放2個蘋果,為什么?

  3、學生自由回答。

  二、教學例2

  1、出示:盒子里有同樣大小的紅球和藍球各4個。要想摸出的球一定有2個同色的,最少要摸出幾個球?

  (1)組織學生讀題,理解題意。

  教師:你們能猜出結果嗎?

  組織學生猜一猜,并相互交流。

  指名學生匯報。

  學生匯報時可能會答出:只摸4個球就可以了,至少要摸出5個球……

  教師:能驗證嗎?

  教師拿出準備好的紅球及藍球,組織學生到講臺前來動手摸一摸,驗證匯報結果的正確性。

  (2)教師:剛才我們通過驗證的方法得出了結論,聯系前面所學的知識,這是一個什么問題?

  2、組織學生議一議,并相互交流。再指名學生匯報。

  教師:上面的問題是一個抽屜問題,請同學們找一找:“抽屜”是什么?“抽屜”有幾個?

  組織學生議一議,并相互交流。

  指名學生匯報,使學生明確:抽屜就是顏色數。(板書)

  教師:能用例1的知識來解答嗎?

  組織學生議一議,并相互交流。

  指名學生匯報。

  使學生明確:只要分的物體比抽屜多,就能保證總有一個抽屜至少放蕩2個球,因此要保證摸出兩個同色的球,摸出球的數量至少要比顏色的種數多一。

  (3)組織學生對例題的解答過程議一議,相互交流,理解解決問題的方法。

  學生不難發現:只要摸出的球比它們的.顏色種數多1,就能保證有兩個球同色。

  3、做一做

  第1題。

  1、獨立思考,判斷正誤。

  2、同學交流,說明理由。其中“370名學生中一定有兩人的生日是同一天”與例1中的“抽屜原理”是一類,“49名學生中一定有5人的出生月份相同”則與例2的類型相同。教師要引導學生把“生日問題”轉化成“抽屜問題”。因為一年中最多有366天,如果把這366天看作366個抽屜,把370個學生放進366個抽屜,人數大于抽屜數,因此總有一個抽屜里至少有兩個人,即他們的生日是同一天。而一年中有12個月,如果把這12個月看作12個抽屜,把49個學生放進12個抽屜,49÷12=4……1,因此,總有一個抽屜里至少有5(即4+1)個人,也就是他們的生日在同一個月。

  三、鞏固練習

  完成課文練習十二第1、3題。

  四、總結評價

  1、師:這節課你有哪些收獲或感想?

  五、布置作業

  1.做一做。把紅、黃、藍三種顏色的小棒各10根混在一起。如果讓你閉上眼睛,每次最少拿出幾根才能保證一定有2根同色的小棒?保證有2對同色的小棒呢?

  2.試一試。給下面每個格子涂上紅色或藍色。觀察每一列,你有什么發現?如果只涂兩列的話,結論有什么變化呢?

  3、拓展練習(選做)

  (1)任意給出5個非0的自然數。有人說一定能找到3個數,讓這3個數的和是3的倍數。你信不信?

  (2)把1~8這8個數任意圍成一個圓圈。在這個圈上,一定有3個相鄰的數之和大于13。你知道其中的奧秘嗎?

抽屜原理教學設計優秀2

  教學內容:

  義務教育課程標準實驗教科書六年級下冊《抽屜原理》。

  教學目標:

  1.知識與能力:初步了解抽屜原理,運用抽屜原理知識解決簡單的實際問題。

  2.過程和方法:經歷抽屜原理的探究過程,通過動手操作、分析、推理等活動,發現、歸納、總結原理。

  3.情感與價值:通過“抽屜原理”的靈活應用感受數學的魅力;提高同學們解決問題的能力和興趣。

  教學重點:

  經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學難點:

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教具學具:

  課件、撲克牌、每組都有相應數量的筆筒、鉛筆、書。

  教學過程:

  一、創設情景導入新課

  師:同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?(師生演示)

  師:想知道老師為什么能做出如此準確的判斷嗎?這其中蘊含一個有趣的數學原理——抽屜原理。(板書課題)這節課我們就一起來研究這個數學原理。

  師:通過今天的學習,你想知道些什么?

  二、自主操作探究新知

  (一)活動1

  課件出示:把4枝鉛筆放到3個筆筒里,可以怎么放?

  師:你們擺擺看,會有什么發現?把你們發現的結果用自己喜歡的方式記錄下來。

  1、學生動手操作,師巡視,了解情況。

  2、匯報交流說理活動

  ①師:有什么發現?誰能說說看?

  師根據學生的回答用數字在黑板上記錄。板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1)

  師:你們是這樣記錄的嗎?

  師:還可以用圖記錄。我把用圖記錄的用課件展示出來。 ②再認真觀察記錄,還有什么發現?

  板書:總有一個筆筒里至少有2枝鉛筆。

  ③怎樣擺可以一次得出結論?(啟發學生用平均分的擺法,引出用除法計算。)板書:4÷3=1(枝)1(枝)

  ④師:這種方法是不是很快就能確定總有一個筆筒里至少有幾枝鉛筆呢?(學生交流)

  ⑤把5枝鉛筆放進4個筆筒里呢?還用擺嗎?板書:5÷4=1(枝)1(枝)

  ⑥課件出示:把6枝鉛筆放進5個筆筒呢?

  把7枝鉛筆放進6個筆筒呢?

  把10枝鉛筆放進9個筆筒呢?

  把100枝鉛筆放進99個筆筒呢?

  板書:7÷6=1(枝)1(枝)

  10÷9=1(枝)1(枝)

  100÷99=1(枝)1(枝)

  ⑦觀察這些算式你發現了什么規律?

  預設學生說出:至少數=商+余數

  師:是不是這個規律呢?我們來試一試吧!

  3、深化探究得出結論

  課件出示:5只鴿子飛回3個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?

  ①學生活動

  ②交流說理活動

  預設:生1:題目的.說法是錯誤的,用商加余數,應該至少有3只鴿子要飛進同一個鴿籠。

  生2:不同意!不是“商加余數”是“商加1”。

  ③師:到底是“商加余數”還是“商加1”?誰的結論對呢?在小組里進行研究、討論。

  ④師:誰能說清楚?板書:5÷3=1(只)2(只)至少數=商+1

  (二)活動二

  課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  1、分組操作后匯報

  板書:5÷2=2(本)1(本)

  7÷2=2(本)1(本)

  9÷2=2(本)1(本)

  2、那么探究到現在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?

  生:至少數=商+1

  3、師:我同意大家的討論。我們這個發現就是有趣的“抽屜原理”,(點題)。“抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應用。用它可以解決許多有趣的問題,讓我們來試試好嗎?

  三、靈活應用解決問題

  1、解釋課前提出的游戲問題。

  2、課件出示:8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?

  3、課件出示:任意13人中,至少有兩人的出生月份相同。為什么?

  4、課件出示:任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?

  四、暢談感受教學結束

  同學們,今天這節課有什么感受?(抽生談談,師總結。)

抽屜原理教學設計優秀3

  教材分析

  《抽屜原理的認識》是人教版數學六年級下冊第五章內容。在數學問題中有一類與“存在性”有關的問題。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明是通過什么方式把這個存在的物體(或人)找出來。這類問題依據的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀的德國數學家狄里克雷(Dirichlet)運用于解決數學問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、

  學情分析

  本節課我根據“教師是組織者、引導者和合作者”這一理念,以學生參與活動為主線,創建新型的教學結構。通過幾個直觀的例子,用假設法向學生介紹“抽屜原理”,學生難以理解,感覺抽象。在教學時,我結合本班實際,用學生熟悉的吸管和杯子貫穿整個課堂,讓學生通過動手操作,在活動中真正去認識、理解“抽屜原理”學生學得輕松也容易接受。

  教學目標

  1、經歷“抽屜原理”的`探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2、通過操作發展 的類推能力,形成抽象的數學思維。

  3、通過“抽屜原理”的靈活應用,感受數學的魅力。

  教學重點和難點

  【教學重點】

  經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  【教學難點】

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學內容:

  六年級數學下冊70頁、71頁例1、例2。

  教學目標:

  1、理解“抽屜原理”的一般形式。

  2、經歷“抽屜原理”的探究過程,體會比較、推理的學習方法,會用“抽屜原理”解決簡單的的實際問題。

  4、感受數學的魅力,提高學習興趣,培養學生的探究精神。

  教學重點:

  經歷“抽屜原理”探究過程,初步了解“抽屜原理”。

  教學難點:

  理解“抽屜原理”的一般規律。

  教學準備:

  相應數量的杯子、鉛筆、課件。

  教學過程:

  一、情景引入

  讓五位學生同時坐在四把椅子上,引出結論:不管怎么坐,總有一把椅子上至少坐了兩名學生。

  師:同學們,你們想知道這是為什么嗎?今天,我們一起研究一個新的有趣的數學問題。

  二、探究新知

  1、探究3根鉛筆放到2個杯子里的問題。

  師:現在用3根鉛筆放在2個杯子里,怎么放?有幾種放法?大家擺擺看,有什么發現?

  擺完后學生匯報,教師作相應的板書(3,0)(2,1),引導學生觀察理解說出:不管怎么放總有一個杯子至少有2根鉛筆。

  (1)師:依此推下去,把4根鉛筆放在3個杯子又怎么放呢?會有這種結論嗎?讓學生動手操作,做好記錄,認真觀察,看看有什么發現?

  (2)、學生匯報放結果,結合學具操作解釋。教師作相應記錄。

  (4,0,0) (3,1,0) (2,2,0) (2,1,1)

  (學生通過操作觀察、比較不難發現有與上個問題同樣結論。)

  (3)學生回答后讓學生閱讀例1中對話框:不管怎么放,總有一個杯子里至少放進2根鉛筆。

  師:“總有”是什么意思?“至少”呢?讓學生理解它們的含義。

  師:怎樣放才能總有一個杯子里鉛筆數最少?引導學生理解需要“平均放”。

  教師出示課件演示讓學生進一步理解“平均放”。

  3、探究n+1根鉛筆放進n個杯子問題

  師:那我們再往下想,6根鉛筆放在5個杯子里,你感覺會有什么結論?

  讓學生思考發現不管怎么放,總有一個杯子里至少有2根鉛筆。

  師:7根鉛筆放進6個杯子,你們又有什么發現?

  學生回答完之后,師提出:是不是只要鉛筆數比杯子數多1,總有一個杯子里至少放進2根鉛筆?讓學生進行小組合作討論匯報。

  學生匯報后引導學生用實驗驗證想法。

  師:把10根小棒放在9個杯子里呢,總有一個杯子里至少有幾根小棒?(2根)

  師:把100根小棒放在99個杯子里,會有什么結論呢?(2根)

  4、總結規律

  師:剛才我們研究的都是鉛筆數比杯子數多1,而余數也正巧是1的,如果余下鉛筆數比杯子多2、多3、多4的呢,結論又會怎樣?

  (1)探究把5根鉛筆放在3個杯子里,不管怎么放,總有一個杯子里至少有幾根鉛筆?為什么?

  a、先同桌擺一擺,再說一說。

  b、你怎么分的?

  學生匯報后,教師演示:將5根筆平均分到3個杯子里里,余下的兩根怎么辦?是把余下的兩根無論放到哪個杯子里都行嗎?怎樣保證至少?

  引導學生知道再把兩根鉛筆平均分,分別放入兩個杯子里。

  (2)探究把15根鉛筆放在4個杯子里的結論。

  (3)、引導學生總結得出結論:商加1是總有一個杯子至少個數。

抽屜原理教學設計優秀4

  教學內容

  人教版六年級下冊第五單元數學廣角

  教學目標:

  1、初步了解“抽屜原理”。

  2、引導學生用操作枚舉或假設的方法探究“抽屜原理”的一般規律。

  3、會用抽屜原理解決簡單的實際問題。

  4、經歷從具體的抽象的探究過程,初步了解抽屜原理,提高學生又根據有條理的進行思考和推理的能力,體會比較的`學習方法。

  教學重點:抽屜原理的理解和簡單應用。

  教學難點:找出實際問題與抽屜原理的內在聯系。

  教學過程:

  一、開展小游戲,引入新課。

  師:在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?

  師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩位同學”我說得對嗎?

  生:對!

  師:想知道老師為什么會做出如此準確的判斷嗎?其實這里面蘊含著一個有趣的數學原理——抽屜原理。

  二、實驗探索

  第一步:研究4枝鉛筆放進3個文具盒,有哪些不同的放法?你們又能從這些方法中發現什么有趣的現象?

  1、(出示)師:把4枝筆放進3個文具盒,有哪些不同的放法?(請一生示范)你們又能從這些放法中發現什么有趣的現象?

  2、師:接下來,就請同學們以小組為單位進行實驗操作,并把放法和發現填在記錄卡上。

  放法

  文具盒1

  文具盒2

  文具盒3

  最多放幾枝

  A

  B

  C

  D

  我們的發現

  3、小組匯報交流。

  (4,0,0)、(3,1,0)、(2,1,1)、(2,2,0)

  生:不管怎么放,總有1個文具盒里至少有2枝鉛筆。

  師:“總有”是什么意思?

  生:一定有。

  師:“至少”是什么意思?

  生:不少于2枝,可能是3枝或4枝。

  生小結:把4枝鉛筆放進3個文具盒,總有一個文具盒至少放進2枝鉛筆。(最多有2枝或2枝以上)

  4、師:把4枝筆飯放進3個文具盒里,不管怎么放,總有一個文具盒里至少有2枝鉛筆。這是我們通過實際操作發現了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論,找出至少數呢?

  生:我們發現如果每個文具盒里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個文具盒里,總有一個文具盒里至少有2枝鉛筆。

  (學生操作演示)

  師:這種分法,實際就是先怎么分的?

  生眾:平均分

  師:為什么要先平均分?

  生1:要想發現存在著“總有一個文具盒里一定至少有2枝”,先平均分,余下1枝,不管放在那個文具盒里,一定會出現“總有一個文具盒里一定至少有2枝”。

  生2:這樣分,只分一次就能確定總有一個文具盒至少有幾枝筆了。

  把筆盡量每個文具盒里都放,還要盡量平均放。怎樣用算式表示呢?

  4÷3=1……11+1=2

  5、那照這樣的思路:把6枝鉛筆放進5個文具盒,怎樣想?(用鉛筆操作演示)6÷5=1……11+1=2

  把7枝鉛筆放進6個文具盒,怎樣想?……

  100枝鉛筆放進99個文具盒呢?

  師提問:發現了什么規律?

  生小結,師整理:鉛筆數比文具盒數多1,不管怎么放,總有一個文具盒里至少放進2枝鉛筆。(同桌之間說一說)

  第二步:研究鉛筆數比文具盒數不是多1的現象。

  1、師:研究到這兒,還想繼續研究嗎?還有哪些值得我們繼續研究的問題?(生自主提問:如不是多1,什么是抽屜原理等等。)

  2、師:如果鉛筆數比文具盒數不是多1,而是多2、3……,總有一個文具盒里至少會有幾枝鉛筆?

  (出示:把5本書放進2個抽屜里,總有一個抽屜里至少會有幾本書呢?)

  生獨立思考,在小組內交流,匯報。

  師:許多同學都沒有再擺學具,用的什么方法?

  生:平均分。把5本書平均分到2個抽屜里,每個抽屜里放2本書,還剩一本書,無論放在哪個抽屜里,總有一個抽屜里至少有3本書。生:5÷2=2……12+1=3

  (出示:5本書放進3個抽屜呢?8本書放進5個抽屜呢?)

  5÷3=1……21+1=28÷5=1……31+3=4

  師:至少數為什么不是“商+余數”?(小組討論,匯報)

  4、對比觀察算式,你能發現求至少數的規律嗎?

  物體數÷抽屜數=商……余數至少數=商+1

  5、總結抽屜原理,運用抽屜原理的關鍵是什么?(找準物體數和抽屜數),閱讀相關資料。

  a÷n=b……c(c≠0)把a個物體放進n個抽屜里,總有一個抽屜里至少放進(b+1)個物體。

  三、應用原理。

  1、請你試一試。(口答,指出什么是物體數,什么是抽屜數)

  (1)6只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一鴿舍,為什么?

  (2)把13只小兔關在5個籠中,至少有幾只兔子要關在同一個籠里?

  (3)有5袋餅干,每袋10快,發給6個小朋友,總有一個小朋友至少分到幾塊餅干?

  2、下面的說法對嗎?說說你的理由。

  向東小學6年級共有370名學生,其中六(2)班有49名學生。

  A、六年級里至少有2名學生的生日是同一天。

  (370個物體,366個抽屜)

  B、六(2)班只有5名學生的生日在同一月。

  (49個物體,12個抽屜,“只有”就是一定)

  C、六(2)至少有25位學生是同一性別。

  3、玩“猜撲克”的游戲。

  抽掉大小王,抽出5張牌,至少幾張是同花色?5÷4=1……11+1=2

  抽15張至少有幾張數字相同?15÷13=1……21+1=2

  4、學生把學生生活中能用抽屜原理解釋的現象寫下來。

  留心觀察+細心思考=偉大發現

  四、全課總結。

抽屜原理教學設計優秀5

  教學內容:

  教科書第68、69頁例1、2。

  教學目標:

  1、使學生經歷將一些實際問題抽象為代數問題的過程,并能運用所學知識解決有關實際問題。

  2、能與他人交流思維過程和結果,并學會有條理地、清晰地闡述自己的觀點。

  教學重點:分配方法。

  教學難點:分配方法。

  教學方法:列舉法、分析法

  學習方法:嘗試法、自主探究法

  教學用具:課件

  教學過程:

  一、定向導學(3分)

  (一)游戲引入

  師:同學們,你們玩過搶椅子的游戲嗎?現在,老師這里準備了3把椅子,請4個同學上來,誰愿來?

  1、游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。

  2、討論:“不管怎么坐,總有一把椅子上至少坐兩個同學”這句話說得對嗎?

  游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的.一種現象。

  引入:不管怎么坐,總有一把椅子上至少坐兩個同學?你知道這是什么道理嗎?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。

  (二)揭示目標

  理解并掌握解決鴿巢問題的解答方法。

  二、自主學習(8分)

  1、看書68頁,閱讀例1:把4枝鉛筆放進3個文具盒中,可以怎么放?有幾種情況?

  (1)理解“總有”和“至少”的意思。

  (2)理解4種放法。

  2、全班同學交流思維的過程和結果。

  3、跟蹤練習。

  68頁做一做:5只鴿子飛回3個鴿舍,至少有2只鴿子要飛進同一個鴿舍里。為什么?

  (1)說出想法。

  如果每個鴿舍只飛進1只鴿子,最多飛回3只鴿子,剩下2只鴿子還要飛進其中的一個鴿舍或分別飛進其中的兩個鴿舍。所以至少有2只鴿子飛進同一個鴿舍。

  (2)嘗試分析有幾種情況。

  (3)說一說你有什么體會。

抽屜原理教學設計優秀6

  【教學內容】

  《義務教育課程標準實驗教科書·數學》六年級下冊第68頁。

  【教學目標】

  1、經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2、 通過操作發展學生的類推能力,形成比較抽象的數學思維。

  3、 通過“抽屜原理”的靈活應用感受數學的魅力。

  【教學重點】

  經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  【教學難點】

  理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  【教具、學具準備】

  每組都有相應數量的盒子、鉛筆、書。

  【教學過程】

  一、課前游戲引入。

  師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)

  師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?

  生:對!

  師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。下面我們開始上課,可以嗎?

  【點評】教師從學生熟悉的“搶椅子”游戲開始,讓學生初步體驗不管怎么坐,總有一把椅子上至少坐兩個同學,使學生明確這是現實生活中存在著的一種現象,激發了學生的學習興趣,為后面開展教與學的活動做了鋪墊。

  二、通過操作,探究新知

  (一)教學例1

  1、出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進2個盒子里,怎么放?有幾種不同的放法?

  師:請同學們實際放放看,誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況 (3,0) (2,1)

  【點評】此處設計教師注意了從最簡單的`數據開始擺放,有利于學生觀察、理解,有利于調動所有的學生積極參與進來。

  師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學。3支筆放進2個盒子里呢?

  生:不管怎么放,總有一個盒子里至少有2枝筆?

  是:是這樣嗎?誰還有這樣的發現,再說一說。

  師:那么,把4枝鉛筆放進3個盒子里,怎么放?有幾種不同的放法?請同學們實際放放看。(師巡視,了解情況,個別指導)

  師:誰來展示一下你擺放的情況?(指名擺)根據學生擺的情況,師板書各種情況。

  (4,0,0)

  (3,1,0)

  (2,2,0)

  (2,1,1),師:還有不同的放法嗎?

  生:沒有了。

  師:你能發現什么?

  生:不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:“總有”是什么意思?

  生:一定有

  師:“至少”有2枝什么意思?

  生:不少于兩只,可能是2枝,也可能是多于2枝?

  師:就是不能少于2枝。(通過操作讓學生充分體驗感受)

  師:把3枝筆放進2個盒子里,和把4枝筆飯放進3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實際操作現了這個結論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結論呢?

  學生思考——組內交流——匯報

  師:哪一組同學能把你們的想法匯報一下?

  組1生:我們發現如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進哪一個盒子里,總有一個盒子里至少有2枝鉛筆。

  師:你能結合操作給大家演示一遍嗎?(學生操作演示)

  師:同學們自己說說看,同位之間邊演示邊說一說好嗎?

  師:這種分法,實際就是先怎么分的?

  生眾:平均分

  師:為什么要先平均分?(組織學生討論)

  生1:要想發現存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現“總有一個盒子里一定至少有2枝”。

  生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?

  師:同意嗎?那么把5枝筆放進4個盒子里呢?(可以結合操作,說一說)

  師:哪位同學能把你的想法匯報一下,生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:把6枝筆放進5個盒子里呢?還用擺嗎?

  生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:把7枝筆放進6個盒子里呢?

  把8枝筆放進7個盒子里呢?

  把9枝筆放進8個盒子里呢?……

  :

  你發現什么?

  生1:筆的枝數比盒子數多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。

  師:你的發現和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。

  【點評】教師關注了“抽屜原理”的最基本原理,物體個數必須要多于抽屜個數,化繁為簡,此處確實有必要提領出來進行教學。在學生自主探索的基礎上,教師注意引導學生得出一般性的結論:只要放的鉛筆數盒數多1,總有一個盒里至少放進2支。通過教師組織開展的扎實有效的教學活動,學生學的有興趣,發展了學生的類推能力,形成比較抽象的數學思維。

抽屜原理教學設計優秀7

  教學目標:

  1.知識與能力目標:

  經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。通過猜測、驗證、觀察、分析等數學活動,建立數學模型,發現規律。滲透“建模”思想。

  2.過程與方法目標:

  經歷從具體到抽象的探究過程,提高學生有根據、有條理地進行思考和推理的能力。

  3.情感、態度與價值觀目標:

  通過“抽屜原理”的靈活應用,提高學生解決數學問題的能力和興趣,感受到數學文化及數學的魅力。

  教學重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  教學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學準備:教具:5個杯子,6根小棒;學具:每組5個杯子,6根小棒。

  教學過程:

  一、游戲激趣,初步體驗。

  師:同學們,你們玩過撲克牌嗎?下面我們用撲克牌來玩個游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學上來各抽一張,我們來驗證一下。如果再請五位同學來抽,我還敢這樣肯定地說,你們相信嗎?其實這里面蘊藏著一個非常有趣的數學原理,想不想研究啊?

  二、操作探究,發現規律。

  (一)經歷“抽屜原理”的探究過程,理解原理。

  1.研究小棒數比杯子數多1的情況。

  師:今天這節課我們就用小棒和杯子來研究。

  師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?

  學生分組操作,并把操作的結果記錄下來。

  請一個小組匯報操作過程,教師在黑板上記錄。

  師:觀察這所有的擺法,你們發現總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。

  師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發現?

  學生分組操作,并把操作的結果記錄下來。

  請一個小組代表匯報操作過程,教師在黑板上記錄。

  師:觀察所有的擺法,你發現了什么?這里的“總有”是什么意思?“至少”又是什么意思?

  師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結果?

  師:怎樣驗證猜測的結果對不對,你又什么好方法?引導學生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結果:6÷5=1……1

  師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結果呢?你又從中發現了什么規律呢?

  師:我們發現了小棒的.數量比杯子的數量多1,總有一個杯子里至少有2根小棒。那如果小棒的數量比杯子的數量多2、多3,又會有什么樣的結果呢?

  2、研究小棒數比杯子數多2、多3的情況。

  師:如果把5根小棒放在3個杯子里,會有什么結果?

  引導:先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?

  師:把7根小棒放在3個杯子里,會有什么結果呢?為什么?

  3、研究小棒數比杯子數的2倍多、3倍多…等情況。

  師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結果?

  小組內討論,再請同學說結果和理由。

  4、總結規律。

  師:我們將小棒看做物體、把杯子看做抽屜,你發現了什么規律?

  總結:把m個物體放在n個抽屜里(m﹥n),總有一個抽屜至少有“商+1”個物體。

  5、介紹抽屜原理。

  “抽屜原理”又稱“鴿巢原理”,最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。

  三、應用“抽屜原理”,感受數學的魅力。

  1、把5本書放進2個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?為什么?

  先思考:這里是把什么看做物體?什么看做抽屜?再說結果和理由。

  2.8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?

  3、向東小學六年級共有370名學生,其中六(2)班有49名學生。請問下面兩人說的對嗎?為什么?

  (1)六年級里至少有兩人的生日是同一天。

  (2)六(2)班中至少有5人是同一個月出生的。

  4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環。張叔叔至少有一鏢不低于9環。為什么?

  5、師:開課時我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學的抽屜原理來解釋嗎?

  四、全課小結

  說一說:今天這節課,我們又學習了什么新知識?(師生共同對本節課的內容進行小結)

  五、布置作業。

  課本73頁練習十二第2.4題。

  六、板書設計。

  數學廣角——抽屜原理

抽屜原理教學設計優秀8

  導學內容:P70——71例1、例2,完成做一做及練習十二1、2題

  導學目標

  1、經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2、通過“抽屜原理”的靈活應用感受數學的魅力。

  導學重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  導學難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  預習學案

  同學們玩過撲克牌嗎?撲克牌有幾種花色?取出兩張王牌,在剩下的52張撲克牌中任意取出5張,我不看牌,我敢肯定的說:這5張牌至少有兩張是同花色,大家相信嗎?

  導學案

  通過今天的學習,你想知道些什么?

  自主操作 探究新知

  (一)活動1

  課件出示:

  把3本書進2個抽屜中,有幾種方法?請同學們放一放,再把你的想法在小組內交流。

  1、學生動手操作,師巡視,了解情況。

  2、匯報交流 說理活動

  你們有什么發現?誰能說說看?

  根據學生的回答用數字在黑板上記錄。板書:(3,0)(2,1)(1,2,)(0,3)

  還可以用什么方法記錄?我把用圖記錄的用課件展示出來。

  ①再認真觀察記錄,還有什么發現?

  (總有一個抽屜里至少有2本書。)

  ②怎樣放可以一次得出結論?(啟發學生用平均分的`放法,引出用除法計算。)板書:3÷2=1(本)……1(本)

  ③這種方法是不是很快就能確定總有一個抽屜里至少有幾本書呢?(學生交流)

  ④把4本書放進3個抽屜里呢?還用擺嗎?板書:4÷3=1(本)……1(本)

  ⑤課件出示:把6本書放進5個抽屜呢?

  把7本書放進6個抽屜呢?

  把10本書放進9個抽屜呢?

  把100本書放進99個抽屜呢?

  板書:7÷6=1(本)……1(本)

  10÷9=1(本)……1(本)

  100÷99=1(本)……1(本)

  ⑥觀察這些算式你發現了什么規律?

  預設學生說出:至少數=商+余數

  師:是不是這個規律呢?我們來試一試吧!

  3、深化探究 得出結論

  課件出示:7只鴿子飛回5個鴿籠,至少有兩只鴿子要飛進同一個鴿籠里,為什么?

  ①學生活動

  ②交流說理活動

  ③到底是“商加余數”還是“商加1”?誰的結論對呢?在小組里進行研究、討論。

  ④誰能說清楚?板書:5÷3=1(只)……2(只)至少數=商+1

  (二)活動二

  課件出示:把5本書放進2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?

  分組操作后匯報

  板書:5÷2=2(本)……1(本)

  7÷2=3(本)……1(本)

  9÷2=4(本)……1(本)

  那么探究到現在,大家認為怎樣才能確定總有一個抽屜至少有幾本書?

  (至少數=商+1)

  我同意大家的討論。我們這個發現就是有趣的“抽屜原理”, “抽屜原理”又稱“鴿籠原理”,最先是由19世紀德國數學家狄里克雷提出的,所以又稱“狄里克雷原理”。這一原理在實際問題中有著廣泛的應用。用它可以解決許多有趣的問題,讓我們來試試好嗎?

  靈活應用 解決問題

  1、解釋課前提出的游戲問題。

  2、8只鴿子飛回3個鴿舍,不管怎樣分,總有一個鴿舍至少有幾只鴿子?

  3、任意13人中,至少有兩人的出生月份相同。為什么?

  4、任意367名學生中,一定存在兩名學生,他們在同一天過生日。為什么?

  暢談感受:同學們,今天這節課有什么感受?

  課堂檢測

  一、填空

  1、7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。

  2、有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。

  3、四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。

  4、任意給出3個不同的自然數,其中一定有2個數的和是( )數。

  二、選擇

  1、5個人逛商店共花了301元錢,每人花的錢數都是整數,其中至少有一人花的錢數不低于( )元。

  A、60 B、61 C、62 D、59

  2、3種商品的總價是13元,每種商品的價格都是整數,至少有一種商品的價格不低于( )元。

  A、3 B、4 C、5 D、無法確定

  三、解決問題

  1、現有5把鎖的各1把鑰匙混在一起跟鎖對不上號了,請問最少試幾次就可能全部對上號?

  2、六、一班四組有男女同學各5名,把他們的名字分別用10個數字代替,至少要點幾個數字,才能保證叫到兩名男生或兩名女生?

  課后拓展

  1、六、二班有學生35人,李老師至少要準備多少本練習本,才能保證有一個人的練習本在兩本或兩本以上?

  2、從1、2、3……100,這100個連續自然數中,任意取出51個不相同的數,其中必有兩個數互質,這是為什么呢?

  板書設計

  抽屜原理

  5÷2=2……1 至少有3只

  7÷2=3……1 至少有4只

  9÷2=4……1 至少有5只

  11÷2=5……1 至少有6只

  至少數=商數+1

抽屜原理教學設計優秀9

  桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發現至少會有一個抽屜里面至少放兩個蘋果。這一現象就是我們所說的“抽屜原理”。

  教學理念:

  激趣是新課導入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學生置身游戲中開始學習,為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學習把抽屜原理較為抽象難懂的內容變為學生感興趣又易于理解的內容。特別是對教材中的結論“總有、至少”等字詞作了充分的闡釋,幫助學生進行較好的“建模”,使復雜問題簡單化,簡單問題模型化,充分體現了新課標要求。

  教學目標

  1.經歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實際問題。

  2.通過操作發展學生的類推能力,形成比較抽象的數學思維。

  3.通過“抽屜原理”的靈活應用感受數學的魅力。

  教學重難點

  重點:經歷“抽屜原理”的探究過程,初步了解“抽屜原理”。

  難點:理解“抽屜原理”,并對一些簡單實際問題加以“模型化”。

  教學過程:

  一、課前游戲引入。

  師:同學們在我們上課之前,先做個小游戲:老師這里準備了4把椅子,請5個同學上來,誰愿來?(學生上來后)

  師:聽清要求 ,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時教師面向全體,背對那5個人。

  師:開始。

  師:都坐下了嗎?

  生:坐下了。

  師:我沒有看到他們坐的'情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學”我說得對嗎?

  生:對!

  師:老師為什么能做出準確的判斷呢?道理是什么?這其中蘊含著一個有趣的數學原理,這節課我們就一起來研究這個原理。(抽屜原理)

  二、通過操作,探究新知

  (一)探究例1

  1、研究3枝鉛筆放進2個文具盒。

  (1)要把3枝鉛筆放進2個文具盒 ,有幾種放法?請同學們想一想,擺一擺,寫一寫,再把你的想法在小組內交流。

  (2)反饋:兩種放法:(3,0)和(2,1)。

  (3)從兩種放法,同學們會有什么發現呢?(總有一個文具盒至少放進2枝鉛筆)你是怎么發現的?(說得真有道理)

  (4)“總有”什么意思?(一定有)

  (5)“至少”有2枝什么意思?(不少于2枝)

  小結:在研究3枝鉛筆放進2個文具盒時,同學們表現得很積極,發現了“不管怎么放,總有一個文具盒放進2枝鉛筆)

  2、研究4枝鉛筆放進3個文具盒。

  (1)要把4枝鉛筆放進3個文具盒里,有幾種放法?請同學們動手擺一擺,再把你的想法在小組內交流。

  (2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。

  (3)從四種放法,同學們會有什么發現呢?(總有一個筆盒至少有2枝鉛筆)

  (4)你是怎么發現的?

  (5)大家通過枚舉出四種放法,能清楚地發現“總有一個文具盒放進2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應該要怎樣放?(每個文具盒都先放進一枝,還剩一枝不管放進哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)

  (6)這位同學運用了假設法來說明問題,你是假設先在每個文具盒里放1枝鉛筆,這種放法其實也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)

  (7)誰能用算式來表示這位同學的想法?(5÷4=1…1)商1表示什么?余數1表示什么?怎么辦?

  (8)在探究4枝鉛筆放進3個文具盒的問題,同學們的方法有兩種,一是枚舉了所有放法,找規律,二是采用了“假設法”來說明理由,你覺得哪種方法更明了更簡單?

  3、類推:把5枝鉛筆放進4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把6枝鉛筆放進5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把7枝鉛筆放進6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  把100枝鉛筆放進99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?

  4、從剛才我們的探究活動中,你有什么發現?(只要放的鉛筆比文具盒的數量多1,總有一個文具盒里至少放進2枝鉛筆。)

  5、如果鉛筆數比文具盒數多2呢?多3呢?是不是也能得到結論:“總有一個筆盒至少有2枝鉛筆。”

  6、小結:剛才我們分析了把鉛筆放進文具盒的情況,只要鉛筆數量多于文具盒數量時,總有一個文具盒至少放進2枝鉛筆。

  這就是今天我們要學習的抽屜原理。既然叫“抽屜原理”是不是應該和抽屜有聯系吧?鉛筆相當于我們要準備放進抽屜的物體,那么文具盒就相當于抽屜了。如果物體數多于抽屜數,我們就能得出結論“總有一個抽屜里放進了2個物體。”

  7、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的游戲中,有沒有抽屜原理?

  過渡:同學們非常了不起,善于運用觀察、分析、思考、推理、證明的方法研究問題,得出結論。同學們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。

  (二)探究例2

  1、研究把5本書放進2個抽屜。

  (1)把5本書放進2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)

  (2)從三種情況中,我們可以得到怎樣的結論呢?(總有一個抽屜至少放進了3本書)

  (3)還可以怎樣理解這個結論?先在每個抽屜里放進2本,剩下的1本放進任何一個抽屜,這個抽屜就有3本書了。

  (4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數1表示什么)2+1=3表示什么?

  2、類推:如果把7本書放進2個抽屜中,至少有一個抽屜放進4本書。

  如果把9本書放進2個抽屜中。至少有一個抽屜放進5本書。

  如果把11本書放進3個抽屜中。至少有一個抽屜放進4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數2表示什么?3+1=4表示什么?

  3、小結:從以上的學習中,你有什么發現?(在解決抽屜原理時,我們可以運用假設法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數多1。)

  4、經過剛才的探索研究,我們經歷了一個很不簡單的思維過程,個個都是了不起的數學家。 “抽屜原理”最先是由19世紀的德國數學家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實際問題中有著廣泛的應用。“抽屜原理”的應用是千變萬化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結果。

  5、做一做:

  7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進同一個佶舍里。為什么?

  8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時同一個鴿舍里。為什么?

  (先讓學生獨立思考,在小組里討論,再全班反饋)

  三、遷移與拓展

  下面我們一起來放松一下,做個小游戲。

  我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?

  四、總結全課

  這節課,你有什么收獲?

抽屜原理教學設計優秀10

  (一)小結

  鴿巢問題的解答方法是什么?

  物體的數量大于抽屜的.數量,總有一個抽屜里至少放進(商+1)個物體。

  (二)檢測

  1、填空

  (1)7只鴿子飛進5個鴿舍,至少有( )只鴿子要飛進同伴的鴿舍里。

  (2)有9本書,要放進2個抽屜里,必須有一個抽屜至少要放( )本書。

  (3)四年級兩個班共有73名學生,這兩個班的學生至少有( )人是同一月出生的。

  (4)任意給出3個不同的自然數,其中一定有2個數的和是( )數。

  2、選擇

  (1)5個人逛商店共花了301元錢,每人花的錢數都是整數,其中至少有一人花的錢數不低于( )元。

  a、60 b、61 c、62 d、59

  (2)3種商品的總價是13元,每種商品的價格都是整數,至少有一種商品的價格不低于( )元。

  a、3 b、4 c、5 d、無法確定

  3、幼兒園老師準備把15本圖畫書分給14個小朋友,結果是什么?

  六、作業(6分)

  完成課本練習十二第2、4題。

  板書

  抽屜原理

  物體的數量大于抽屜的數量,總有一個抽屜至少放進(商+1)物體。

抽屜原理教學設計優秀11

  1、出示例2

  把7本書放進3個抽屜中,不管怎么放,總有一個抽屜至少放進幾本書?(1)合作交流有幾種放法。

  不難得出,總有一個抽屜至少放進3本。

  (2)指名說一說思維過程。

  如果每個抽屜放2本,放了6本書。剩下的1本還要放進其中一個抽屜,所以至少有1個抽屜放進3本書。

  2、如果一共有8本書會怎樣呢10本呢?

  3、你能用算式表示以上過程嗎?你有什么發現?

  7÷3=2……1(至少放3本)

  8÷3=2……2(至少放4本)

  10÷3=3……1(至少放5本)

  4、做一做

  11只鴿子飛回4個鴿舍,至少有3只鴿子要飛進同一個鴿舍里。為什么?

  四、質疑探究(5分)

  1、鴿巢問題怎樣求?

  小結:先平均分配,再把余數進行分配,得出的`就是一個抽屜至少放進的本數。

  2、做一做。

  69頁做一做2題。

【抽屜原理教學設計優秀】相關文章:

《抽屜原理》教學設計優秀04-11

抽屜原理優秀教學設計優秀06-16

抽屜原理教學設計11-12

抽屜原理教學設計04-18

《抽屜原理》教學設計02-22

《抽屜原理》教學設計優秀(精選10篇)05-22

《抽屜原理》教學設計通用04-28

《抽屜原理》教學設計14篇03-05

公開課《抽屜原理》教學設計07-03

主站蜘蛛池模板: 舞阳县| 宕昌县| 修水县| 义马市| 梓潼县| 库尔勒市| 茌平县| 崇文区| 花垣县| 宝坻区| 二连浩特市| 遵义县| 宕昌县| 晴隆县| 奎屯市| 西藏| 东港市| 淳安县| 南丰县| 年辖:市辖区| 城步| 新河县| 鸡西市| 平利县| 弥勒县| 库尔勒市| 通江县| 平昌县| 清丰县| 含山县| 肇州县| 石柱| 弥勒县| 池州市| 曲麻莱县| 金塔县| 儋州市| 南城县| 武强县| 淳化县| 远安县|