[熱門]分數的基本性質教學設計15篇
作為一名辛苦耕耘的教育工作者,總不可避免地需要編寫教學設計,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創造性的決策,以解決怎樣教的問題。我們應該怎么寫教學設計呢?以下是小編為大家整理的分數的基本性質教學設計,希望能夠幫助到大家。
分數的基本性質教學設計1
教學要求
①使學生理解分數的基本性質,并會應用分數的基本性質把不同分母的分數化成分母相同而大小不變的分數。
②培養學生觀察、分析和抽象概括能力。③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點理解分數的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2.說一說:(1)商不變的性質是什么?(2)分數與除法的關系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
讓學生大膽猜測:在除法里有商不變的性質,在分數里會不會也有類似的性質存在呢?這個性質是什么呢?
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1.動手操作,驗證性質。
(1)讓學生拿出三張同樣的長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數表示出來。
(2)觀察比較后引導學生得出:==
(3)從左往右看:==
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:====
讓學生再次歸納:分數的分子、分母同時除以相同的`數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2.分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3.學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。教師板書:
====
4.練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1.這節課我們學習了什么內容?
2.什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數的基本性質”是西師版小學數學五年級下冊的內容,它是約分,通分的依據,對于以后學習比的基本性質也有很大的幫助,所以,分數的基本性質是本單元的教學重點課。這節課我大膽利用“猜想和驗證”方法,留給學生足夠的探索時間和廣闊的思維空間,讓學生得到的不僅是數學基本知識,更重要的是數學學習的方法,從而激勵學生進一步地主動學習,產生我會學的成就感。目的是讓學生學會學習,學會思考,學會創造,進而培養學生用數學的思想方法,思考并解決在實際生活中所遇到的各種問題,這也是學生適應未來生活必須的基本素質。
這節課是在學生已掌握了商不變的性質之后,并在已有應用經驗的基礎上進行的,我是這樣設計教學的:
1、通過商不變的性質、除法與分數的關系的復習,幫助學生意識到商不變的變規律與新知識的聯系,為新知識的學習做好必要的準備。讓學生根據商不變的性質大膽猜想,分數的基本性質是什么?說出自己的想法。
2、充分發揮學生主體作用,引導學生自主探究。讓學生通過折紙游戲,操作、觀察、比較,驗證自己的猜想。涂色部分可用不同的分數表示,從而培養學生的動手能力,以及觀察問題、解決問題的能力。
3、運用知識,解決實際問題。為了把知識轉化為能力,練習的設計注意了典型性、多樣性、深刻性、靈活性。歸納總結出分數的基本性質后,先進行基本練習,深化對分數的基本性質認識。在學完整個新知以后,在進行綜合練習,鞏固提高。通過應用拓展,使學生加深對分數的基本性質的理解,并培養學生運用所學的知識解決實際問題的能力。
4、0除外的環節設計。在學生歸納出分數的基不性質后,缺少0除外這個難點,我設計了判斷一個分數的分子和分母同時乘0,讓學生通過練習,馬上想到0不能做除數,在分數中分母不能為0,引出:分子和分母同時乘或除以相同的數,必須0除外,突破難點。
分數的基本性質教學設計2
教學要求
①分數是數學中的一種特殊表示形式,用來表示一個整體被分成若干等份中的一部分。分數有一些基本性質,比如分數的大小與分子成正比,分母成反比,即分子越大,分數越大;分母越大,分數越小。另外,分數可以化簡為最簡形式,即分子與分母沒有共同的因數。當我們需要比較或運算不同分母的分數時,可以通過找到它們的最小公倍數,將分數化為相同分母的形式,從而方便比較大小或進行運算。
②培養學生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯系”的辯證唯物主義觀點。
教學重點理解分數的基本性質。
教學用具每位學生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學過程
一、創設情境
1.120÷30的商是多少?被除數和除數都擴大3倍,商是多少?被除數和除數都縮小10倍呢?
2.說一說:
(1)商不變的性質是什么?
(2)分數與除法的關系是什么?
3.填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
分數除法中是否存在商不變的性質,讓我們一起來探索吧!你認為在分數中會不會存在類似的性質呢?這個性質會是什么呢?讓我們一起大膽猜測吧!
隨著學生的回答,教師板書課題:分數的基本性質。
三、探索研究
1.動手操作,驗證性質。
(1)請拿出三張同樣大小的長方形紙條,將它們分別平均分成2份、4份、6份,并分別用不同顏色涂抹其中的1份、2份、3份。請用分數形式表示每張紙條上被涂色的部分。
(2)觀察比較后引導學生得出:==
(3)從左往右看:==
由變成,平均分的份數和表示的份數有什么變化?
把平均分的份數和表示的份數都乘以2,就得到,即==(板書)。
把平均分的份數和表示的份數都乘以3,就得到,即:==(板書)。
引導學生初步小結得出:分數的分子、分母同時乘以相同的數,分數的大小不變。
(4)從右往左看:==
引導學生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
讓學生再次歸納:分數的分子、分母同時除以相同的數,分數的大小不變。
(5)引導學生概括出分數的基本性質,并與前面的猜想相回應。
(6)提問:這里的“相同的數“,是不是任何數都可以呢?(補充板書:零除外)
2.分數的基本性質與商不變的性質的比較。
在除法里有商不變的性質,在分數里有分數的基本性質。
想一想:根據分數與除法的關系以及整數除法中商不變的性質,你能說明分數的基本性質嗎?
3.學習把分數化成指定分母而大小不變的分數。
(1)出示例2,幫助學生理解題意。
(2)啟發:要把和化成分母是12而大小不變的分數,分子應該怎樣變化?變化的根據是什么?
(3)讓學生在書上填空,請一名學生口答。
4.練習。教材第108頁的.做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結
1.這節課我們學習了什么內容?
2.什么是分數的基本性質?
六、課堂作業
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
教學反思:
“分數的基本性質”是小學五年級下冊數學教材的重要內容,它是約分、通分的基礎,對于學習比的基本性質也具有重要意義。因此,分數的基本性質是本單元的重點課程。在這節課上,我將采用“猜想和驗證”的教學方法,為學生留出充分的探索時間和廣闊的思維空間,讓他們在實踐中掌握知識,培養數學思維。通過這樣的教學方式,不僅使學生掌握了數學基本知識,更重要的是激發了他們學習的主動性,培養了他們解決實際問題的能力。這樣的教學目的在于培養學生學會學習、學會思考、學會創造,從而使他們能夠運用數學的思維方式解決未來生活中遇到的各種問題,這也是學生必備的基本素質。
這節課是在學生已經掌握了商的不變性質,并具有一定應用經驗的基礎上進行的。在這節課中,我設計了一些新的挑戰和問題,幫助學生深入理解商的不變性質,并在實際問題中靈活運用所學知識。通過這種方式,學生可以提高對商的理解和運用能力,為他們進一步學習和應用商的相關知識打下堅實的基礎。
1、商不變的性質與除法、分數的關系密切相關,商不變意味著在一定條件下商的值保持不變。在商不變的基礎上,我們可以猜想分數的基本性質是什么?請同學們根據商不變的性質大膽猜想一下,分數的基本性質是什么?并且說出你們的想法。
2、讓學生在折紙游戲中充分發揮主體作用,通過操作、觀察、比較來驗證自己的猜想。可以讓他們嘗試不同的折法,觀察折疊后的形狀和顏色變化,并用不同的顏色表示不同的分數,培養他們的動手能力和觀察解決問題的能力。
3、設計練習時要考慮到知識的轉化能力,因此練習的設計應該具有典型性、多樣性、深度和靈活性。首先,通過基礎練習深化對分數基本性質的理解,包括分子、分母、約分、通分等方面。然后,在學完整個知識點后,進行綜合練習,鞏固知識,提高能力。在練習中注重應用拓展,讓學生能夠將所學知識應用到實際問題中,培養他們解決問題的能力。
分數的基本性質教學設計3
教學目標
1、學生能理解和掌握分數的基本性質,知道分數的基本性質與整數除法中商不變的性質之間的聯系。
2、學生能運用分數的基本性質把一個分數化成分母不同而大小相等的分數。
3、培養學生觀察、比較、抽象概括的邏輯思維能力,滲透“事物之間是相互聯系的”辯證唯物主義觀點。
教學重、難點:
理解分數基本性質的含義,掌握分數基本性質的推導過程。運用分數的基本性質解決實際問題。
教學過程:
一、復習舊知,了解學習起點
二、創設情境,激趣引入
課件動畫顯示:藍貓、菲菲、霸王龍最喜歡吃淘氣做的餅。有一天淘氣做了3塊大小一樣的餅分給藍貓、菲菲、霸王龍。藍貓說:“我功勞最大,我要吃一大塊。”菲菲說:“我要吃兩塊。”霸王龍搶著說:“我個頭最大,我要吃3塊。”淘氣想了想便動手切餅滿足了他們的要求,并向他們提問:“剛才,我把3個同樣大小的餅,平均分成2份、4份、6份,分別給了你們1塊、2塊、3塊,你們知道誰吃的多嗎?”淘氣的問題,立刻引起了他們的爭論。同學們,你們知道他們誰吃得多嗎?
三、探究新知,揭示規律
1.動手操作,形象感知。
(1)折。請學生拿出3張同樣大小的圓形紙,把每張圓形紙都看做單位“1”,用手分別平均折成2份、4份、6份。
(2)畫。在折好的圓形紙上,分別把其中的1份、2份、3份畫上陰影。
(3)剪。把圓中的`陰影部分剪下來。
(4)比。把剪下的陰影部分重疊,比一比結果怎樣。
2.觀察比較,探究規律。
(1)通過動手操作,誰能說一說動畫片中藍貓、菲菲、霸王龍各吃了一個餅的幾分之幾?(板書。)
(2)你認為他們誰吃的多?請到講臺上一邊演示一邊講一講。
學生匯報后,教師用電腦演示。
把3塊同樣大小的餅分別平均分成2份、4份、6份,依次表示。把平移、重疊,明顯地看出塊餅、塊餅、塊餅大小相等。通過分餅、觀察、驗證得出結論:“藍貓、菲菲、霸王龍分的餅一樣多。”
(3)既然他們3個吃的同樣多,那么、的大小怎樣?我們可以用什么符號把他們連接起來?(板書。)
(4)聰明的淘氣是用什么辦法既滿足藍貓、菲菲、霸王龍的要求,又分得那么公平呢?這就是我們今天研究的內容“分數的基本性質”。(板書課題。)
(5)這3個分數的分子、分母都不同,為什么分數的大小卻相等?你們能找出它們的變化規律嗎?請同學們4人為一組,討論這幾個問題。(課件出示討論題。)
討論題:
①它們之間有什么關系?它們的什么變了?什么沒有變?
②從左往右看,是按照什么規律變化的?從右往左看,又是按照什么規律變化的呢?
(6)學生匯報,師生討論情況。
師:這3個分數是相等的關系。可以寫成,它們的分子、分母變了,而分數的大小沒有變。
師:從左往右看,由得到,是把的分子、分母都乘以2,也就是把分的份數和表示的份數都擴大2倍,就得到。同理的分子、分母都乘以3,就得到,而分數的大小不變。(板書:都乘以相同的數。)
從右往左看,分數的分子和分母又是按照什么規律變化的?通過分析,比較,,得出:分數的分子和分母都除以相同的數,分數的大小不變。
(7)抓住焦點,辨中求真。
的分子、分母能否同時乘以或者除以零呢?圍繞這個問題展開討論、辯論。通過討論、爭辯,使學生認識到“因為分數的分子、分母都乘以0,則分數成為”。
分數的基本性質教學設計4
教學內容:人教版新課標教科書小學數學第十冊75~77頁例
1、例2.教學目標:1知識與技能目標:
(1)經歷探索分數的基本性質的過程,理解分數的基本性質。
(2)能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
2、過程與方法目標:
(1)經歷觀察、操作和討論等學習活動,并在探索過程中,能進行有條理的思考,能對分數的基本性質做出簡要的、合理的說明。(2)培養學生的觀察、比較、歸納、總結概括能力。
(3)能根據解決的需要,收集有用的信息進行歸納,發展學生歸納、推理能力。
3、情感態度與價值觀目標:
(1)經歷觀察、操作和討論等數學學習活動,使學生進一步體驗數學學習的樂趣。(2)鼓勵學生敢于發現問題,培養學生敢于解決問題的學習品質。
教學重點:探索、發現和掌握分數的基本性質,并能運用分數的基本性質解決問題。教學難點:自主探究、歸納概括分數的基本性質。教學準備:學生準備一張正方形的紙,課件教學過程:
一、故事導入。
師:同學們,你們喜歡看《喜羊羊與灰太狼》的動畫片嗎?生:喜歡。
師:老師這里有一個慢羊羊分餅的故事,羊村的小羊最喜歡吃村長做得餅。一天,村子做了三塊大小一樣的餅分給小羊們吃,他把第一塊餅的1/2分給懶羊羊,再把二塊餅的2/4分給喜羊羊,最后把第三塊餅的4/8分給美羊羊,懶羊羊不高興地說:"村長不公平,他們的多,我的少。”(師邊說邊板書分數)同學們,村長公平嗎?他們那個多,那個少?
生:公平,其實他們分得一樣多。
師:到底你們的猜想是否正確呢?讓我們來驗證一下!
二、探究新知,解決問題:1、小組合作,驗證猜想:(1)玩一玩,比一比.(讀要求)師:我們現在小組合作來玩一玩,比一比.(出示要求)
師:(讀要求)現在開始.(學生匯報)師:你們發現了什么?
生1:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數都相等。(師在分數上畫符號)
生2:老師,我們通過比較這三幅圖的陰影部分完全重合,那這三個分數都相等。(出示課件演示)
2、初步概括分數的基本性質.(2)算一算,找一找.師:(提問)同學們觀察一下,這三個分母什么變了?什么沒變?生1:它們的分子和分母變化了,但分數的大小沒變。生2:它們的分子和分母變化了,但分數的大小沒變。
師:這三個分數的分子和分母都不相同,為什么分數的大小都相等呢?同學們思考一下。
生1:它們的分子和分母都乘相同的數。生2:它們的分子和分母都除以相同的數。
師:那同學們的猜想是否正確呢?它們的變化規律又是怎樣呢?我們小組合作觀察討論。并把發現的規律寫下來。
(出示課件)
小組匯報:(歸納規律)
師:哪一組把你們討論的結果匯報一下,從左往右觀察,你們發現了什么?生1:從左往右觀察,我們發現1/2的分子和分母同時乘2,分數的大小不變。生2:從左往右觀察,我們發現1/2的分子和分母同時除以4,分數的大小不變。師:你們是這樣想的,既然這樣,那么分子和分母同時乘5,分數的的大小改變,嗎?生:不變。
師:同時乘
6.8呢?生:不變。
師:那你們能不能根據這個式子來總結一下規律呢?
生1:一個分數的分子和分母同時乘相同的數,分數的大小不變。生2:一個分數的分子和分母同時乘相同的數,分數的大小不變。師:(板書)誰來舉這樣一個例子?生:......
師:這樣的例子,我們可以舉很多,剛才我們是從左往右觀察,從右往左觀察,哪一組匯報一下。
生:從右往左觀察,我們發現了,4/8的分子和分母同時除以2,得到了2/4,分數2/4的分子和分母同時除以2得到分數1/2,他們的分數的大小不變。
生:從右往左觀察,我們發現了,4/8的分子和分母同時除以2,得到了2/4,分數2/4的分子和分母同時除以2得到分數1/2,他們的分數的大小不變。(師課件演示)
師:你們是這樣想的,既然這樣,那么分子和分母同時除以5,分數的的大小改變,嗎?生:不變。
師:同時除以
6.8呢?生:不變。
師:那你們能不能根據這個式子來總結一下規律呢?
生1:一個分數的分子和分母同時除以相同的數,分數的大小不變。生2:一個分數的分子和分母同時除以相同的數,分數的大小不變。師:(板書)誰來舉這樣一個例子?生舉例
3、強調規律
師:我把兩句話合成了一句話,根據分數的這一變化規律,你認為下面的式子對嗎?(課件出示)
生:回答,錯的,因為分數的分子、分母沒有乘相同的數。師:(在黑板上圈出)對必須乘相同的數。
生:錯,因為分子乘2,分母沒有乘2,分子和分母沒有同時乘。師:(在黑板上圈出)對必須同時乘。
師:分數的`分子、分母都乘或除以相同的數,分數的大小不變,這里“相同的數”是不是任何數都可以呢?我們看一看(課件出示)師:這個式子成立嗎?
生:不成立,因為0不能做除數,4乘0得0是分母,分母相當于除數,所以這個式子是錯誤的。
師:我不乘0,我除以0可以么?生:不成立,因為0不能作除數。
師:同學們不錯,這兩個式子都不成立,我們剛才總結的分子、分母同時乘或除以相同的數,這相同的數必須(生:0除外)(師板書)
師:這一變化規律就是我們這節課學習的內容,分數的基本性質,(板書課題)在這一規律里,需要我們注意的是:(生:同時、相同的數、0除外)
師:我相信懶羊羊學習了分數的基本性質,那就不會生氣了它知道(出示課件)一樣多,咱們同學們千萬不要犯它同樣的錯誤了,我們把這一條規律讀兩遍,并記下它。(生讀規律)
師:學習了分數的基本性質,我想利用你們的火眼金睛,當一當小法官(出示課件)
生:(讀題,用手勢表示對、錯,并說出原因)
三、運用規律,自學例題1、學習例2師:這個分數的基本性質特別的有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數,我們一起去看一看。(課件出示例題)學生讀題
師:分子、分母應該怎樣變化?變化的依據是什么?小組內討論一下(學生討論)師:誰來說一說?
生:2/3的分子分母同時乘4得到8/12,變化的依據是分數的基本性質。生:10/24的分子和分母同時除以2,得到5/12,變化的依據是分數的基本性質。師:回答得不錯,自己獨立完成這題。
師:(巡視)請一名學生說出答案,(生說,師出示答案)
四、分數的基本性質與商不變的性質
師:分數的基本性質作用可大了,那大家回想一下,這與我們以前學習的除法里面哪一個性質相似?生:商不變的性質。
師:除法里商不變的性質是怎么說的?
生:被除數和除數同時擴大或縮小相同的倍數(0除外),商不變。師:你們能否用商不變的性質來說明分數的基本性質?小組內討論一下。
小組討論
師:哪一組把討論的結果匯報一下。
生:在分數里,被除數相當于分子,除數相當與分母,被除數與除數同時擴大或縮小相同的倍數,就相當于分子、分母同時乘或除以相同的數(0除外),因此,商不變就相當于分數的大小不變。(師板書)
師:既然能用商不變的性質來說一說分數的基本性質,那我們來小試牛刀。(出示課件)
生:5除以10等于1/2,當被除數5縮小5倍就相當于分子除以5,分子除以5,分母也除以5,所以10除以5得2.生:12除以24等于4/8,當除數24除以3得8就相當于分母除以3,分母除以3分子也除以3,12除以3得4.五、課堂運用。1、跨欄高手
師:同學們的回答簡直太棒了,那你們有資格讓老師把你們帶到運動場去當跨欄高手了。(出示課件)
師:(學生回答三題)同學們這么大的數一下子就得出結果,有什么秘訣嗎?生:用大數除以小數,就知道分母、分子擴大了幾倍.2、拓展延伸:
師:當了跨欄高手,我們的成績非常的好,那我們就到羊村去玩吧,來到羊村,慢羊羊讓大家當村長,解決難題,你們敢接招嗎?生:敢
師:(出示課件)那我們就要小組為單位,開始玩游戲。小組匯報結果
六、撿拾碩果
看到同學們這么自信的回答,老師知道今天大家的收獲不少,說一說這節課你都收獲了哪些?生說
師:同學們,表現得太好了,這節課,老師從你們的身上也學到了許多,謝謝你們,下課!
分數的基本性質教學設計5
一、教學目標:
1、讓學生經歷分數基本性質的探究過程,理解和掌握分數的基本性質,初步建立數學模型。
2、利用分數的基本性質把一個分數化為指定分母(或分子)而大小不變的分數。
3、培養學生的觀察、概括等思維能力及(滲透變與不變)數學學習興趣。
二、教學重點:
理解掌握分數的基本性質,它是約分,通分的依據
三、教學難點:
理解和掌握分數的基本性質,初步建立數學模型。
四、教學準備:
課件、正方形的紙。
五、教學設計過程:
(一)遷移舊知.提出猜想
1、回憶舊知
猜信封:老師手上的信封里有一個數、一道算式,我抽出其中一張 ,誰能猜出另一張是什么?出示: 2÷3
你為什么這樣猜呢?引導學生回憶分數與除法的關系。媒體演示:分數與除法的關系:
被除數÷除數=
誰能說一道與2÷3商一樣的除法算式?學生一邊說,教師一邊板書算式。你為什么認為這些算式的商是一樣的?引導學生回憶什么是商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想:
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
A、 看圖分類
下面是一組相等的正方形,請寫出每個圖形陰影部分所表示的分數,并把相同的分數分在一起。
B、 討論方法
師:你是怎么判斷它們相等的?
師:它們相等,用算式可以怎么表示?
1/2 = 2/4 = 4/8
C、研究規律
師:這些相等的式子,除了我們從圖上看到的大小相等之外,還有沒有其他的秘密呢?
利用研究卡進行研究。
確定的研究對象
分子和分母同時乘上或者
除以一個相同的數
得到的分數
研究對象與得到的分數相等嗎?
相等( )不相等( )
猜想是否成立?
成立( )不成立( )
充分利用學生的生成資源:揭示課題:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。(板書)
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
練習:2/3=( )/18、 6/21=2/( )、 3/5=21/( )、 27/39=( )/13
師:這里面什么變了,什么不變?(生:分子和分母變了,但分數的大小不變)
師:分子與分母是怎樣變化的?(同時乘或除以相同的數,0除外)
師:分數的'基本性質與商不變性質有什么聯系?
D、質疑完善
3/4 = 3×( )/ 4×( )
師:括號中可以填哪些數?
預設:可以填無數個數
師:如果只用一個數來表示,填什么數好?
預設:字母
師:這個字母有什么特殊要求嗎?(0除外)
得到一個初級的數學模型。3/4= 3×X/ 4×X(X≠0)
讓學生打開課本進行閱讀、內化,并想一想還有什么問題嗎?
(三) 練習升華
1、5/7=( )/35 、3/4=9/( )、 3/( )=12/20、 16/24=( )/3
2、把5/6和1/4都化為分母為12而大小不變的分數。
3、把2/3和3/4都化為分子為6而大小不變的分數。
4、把2/5的分子加上2以后,要使分數的大小不變,分母應加上多少?
5、 和 哪一個分數大,你能講出判斷的依據嗎?
(四)總結延伸
師:這節課學了什么?
師:如果一個分數為A/B,你能用一個式子來表示分數的基本性質嗎?
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)(板書)
六、作業p87-1、2
板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
A/B=A×X/ B×X(X≠0)或A/B=A÷X/ B÷X(X≠0)
6÷8
3÷4
12÷16
分數的基本性質教學設計6
教學目標:
1、讓學生理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2.根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數,為學習約分和通分打下基礎。
學習目標:
1、理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系。
2、根據分數的基本性質,學會把一個分數化成用指定的分母做分母或指定的分子做分子而大小不變的分數
重點難點:
1、使學生理解分數的基本性質。
2、讓學生自主探索,發現和歸納分數的基本性質,以及應用它解決相關的問題。
過程設計:
一、激情導入
1、導入課題
生讀故事。
唐僧師徒四人在西天取經的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經很多了,高興得答應了。可是悟空卻在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?
師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數到底有什么關系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關系?
2、明確目標
理解和掌握分數的基本性質,知道它與整數除法中商不變性質之間的聯系;并會應用分數的基本性質。
3、預期效果
達到教學目標
二、民主導學
任務一
任務呈現
動手操作驗證性質
自主學習
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學讀學習要求
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發現什么?
師:同位分工合作完成。現在開始。
師選擇一份作品粘貼在黑板上,請一同學說一說你們有什么發現?
請二至三位同學說一說。
師:我們都發現了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?
生回答。師:現在你們知道孫悟空為什么笑了嗎?請同學回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶呢?這幾個分數的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)
下面請同學們把這個式子從左往右地觀察,看一下每個分數的分子分母怎樣變化?才得到下一個分數。
生:我發現了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學重復。
師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數的大小不變,那如果我們把分數的分子分母同時乘5分數的大小變嗎?同時乘以10呢?那你們能不能根據這個式子來總結一個規律呢?
生回答:一個分數的分子分母同時擴大相同的倍數,它們分數的大小不變。
請一至二名同學回答。
師板書:分數的分子分母同時乘相同的數,分數的大小不變。
師:誰來舉一個例子。指名三位同學回答,師板書,并問:同時乘以了幾?
師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發現什么呢?
請一同學回答,
生:我們發現了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
師:嗯,分數的分子分母同時除以2分數的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據這個式子再總結出一句話呢?
生:分數的分子分母同時除以相同的.數,分數的大小不變。 (二名學生重復)
師板書:或者除以
師:你能根據剛才總結的規律舉一個例子嗎?
讓三名學生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流
師指著板書說明:我們說分子分母同時乘或除以相同的數,分數的大小不變,那是不是包括所有的數呢?我們一起來看這樣一個分數。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)
生:不成立,
師:為什么
生:因為0不能作除數,
師:0不能作除數,所以這個式子是錯誤的。(畫叉)
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)
生:不成立,因為在分數當中分母相當于除數,除數不能為0。
師:對,大家都知道0不能作除數,所以這兩個式子都是不成立的?(畫叉)我們剛才總結的分數的分子分母同時乘或者除以相同的數,不是所有的數需要加上一句什么話
生:0除外
師板書0除外
師:到現在為止這個規律我們就總結完了,那在這個規律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數
師:“同時”和“相同的數”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節課要學習的分數的基本性質。(師板書課題)
師:我相信如果當時豬八戒會這個分數的基本性質,那就不會出現這樣的笑話了,那咱們同學們千萬不要范它那樣的錯誤了。下面讓我們一起把分數的基本性質邊讀邊記。
生齊讀二遍。
師:這個分數的基本性質特別有用,我們可以根據分數的基本性質把一個分數化成和它相等的另外一個分數。
任務二
任務呈現
課本76頁的例2,請一同學讀題。
自主學習
生獨立完成,完成后和同位的同學說一說你是怎樣想的。
展示交流
每題請二名同學回答,(集體訂正答案)
檢測導結
1、目標練習
76頁“做一做”
練習十四的1、2、6、7題
2、結果反饋
生做完后同桌交流,再指名說說結果。
3、反思總結
今天這節課你都學會了哪些知識?請大家談談學習了分數的基本性質的收獲。
三、輔助設計
教具課件設計
小黑板正方形紙數塊
板書設計
分數的基本性質
練習和作業設計
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結:這節課我們學習了分數基本性質,而且我們還學會了根據分數的基本性質把一個分數轉化成和它相等的另外一個分數,其實生活當中還有許多的數學知識,如果你留心觀察,你就能夠發現,我希望大家都能做一個在學習上面的有心人。
分數的基本性質教學設計7
一、教學目標
1.經歷探索分數基本性質的過程,理解分數的基本性質。
2.能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3.經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
二、教學重、難點
教學重點是:分數的基本性質。
教學難點是:對分數的基本性質的理解。
三、教學方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學過程
(一)、故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的香蕉餅了。一天,猴王做了三個大小一樣的香蕉餅給小猴們吃,它先把第一個香蕉餅切成四塊,分給猴1一塊。猴2看到后說:“太少了,我要兩塊。”猴王于是把第二個香蕉餅切成八塊,分給猴2兩塊。猴3更貪心,它趕緊說:“我要三塊,我要三塊。”于是,猴王又把第三個香蕉餅切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:好的,這是修改后的內容:討論哪只猴子分得的多?請同學們發表自己的觀點。老師拿出三塊大小一樣的餅干,讓學生觀察、分配,最終得出結論:三只猴子分得的餅干數量是相同的。
引導:猴王非常聰明,他想出了一個巧妙的方法來滿足小猴子們的要求,并且確保每只小猴子都能得到公平的份額。這個方法就是利用分數的基本性質來進行分配。想要了解更多詳情嗎?學習了“分數的基本性質”就能揭開這個謎題哦!(板書課題)
2.組織討論。
(1)三只猴子分得的餅同樣多,說明它們分得的餅的分數是相等關系。具體來說,如果三只猴子分得的餅的分數分別為$a$、$b$、$c$,那么有$a=b=c$。三只猴子平均分的份數和表示的份數是不變的,只是分數的分子和分母變化了。例如,如果它們分得的餅是...,那么這三個分數雖然看起來不同,但實際上是相等的。
(2)猴王給小猴子分了三塊大小一樣的香蕉,分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數嗎?通過觀察演示得出:2=4=6。
(3)我們班有40名同學,按照學習小組劃分,每組有10人。那么第一、二組學生的人數占全班學生人數的幾分之幾?請用分數表示,并計算出:12=24=20xx。
3.引入新課:黑板上三組相等的分數有什么共同的特點?學生回答后板書:
分數的分子和分母變化了,分數的大小不變。
它們各是按照什么規律變化的呢?我們今天就來共同研究這個變化規律。
(二)、比較歸納,揭示規律
1.出示思考題。
比較每組分數的分子和分母:
(1)從左往右看,是按照什么規律變化的?
(2)從右往左看,又是按照什么規律變化的?
讓學生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質。
(1)34到68,分子、分母都乘以2得到。原來是把1平均分成4份,現在是把分的份數和表示份數都擴大2倍。
板書:
(2)34是怎樣變化成912的呢?怎么填?學生回答后填空。
(3)引導口述:34的分子、分母都乘以2,得到68,分數的大小不變。
(4)學生們對幾組分數進行了觀察,發現分數的分子和分母都乘以相同的數時,分數的大小不變。經過討論后,他們得出結論:分數的分子和分母同乘一個數,分數的大小不變。
(板書:都乘以
相同的數)
(5)分數的分子和分母從右往左看,它們都是按照遞減的規律變化的。通過比較每組分數的分子和分母可以發現,分數的分子和分母都除以相同的數,分數的大小不變。
(板書:都除以)
(6)在乘法和除法的運算性質中,我們知道都乘以、都除以一個非零數,結果不變。如果去掉其中一個“都”字,換成“或者”,那么就不再滿足這個性質了。在教科書中,分數的基本性質規定了“都乘以或者都除以一個非零數”,這樣可以確保運算結果的準確性和穩定性。同時,性質中也強調了“零除外”,因為除數為零是不合法的操作,會導致數學運算的錯誤和混亂。因此,性質中規定了“零除外”是為了保證數學運算的正確性和合理性。
(板書:零除外)
(7)學生們現在我們一起來學習關于分數的基本性質。讓我們找出這些性質中關鍵的詞語,比如“都”、“相同的數”、“零除外”等。然后我們重點讀一下這些關鍵詞。接下來讓我們一起讀一讀黑板上寫的分數基本性質。
3.出示例2:把12和1024化成分母是12而大小不變的分數。
思考:要把12和1024化成分母是12而大小不變的分數,分子、分母怎么變化?變化的依據是什么?
4.討論:猴王運用什么規律來分餅的'?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質疑:讓學生看看課本和板書,回顧剛才學習的過程,提出疑問和見解,師生答疑。
(三)、溝通說明,揭示聯系
通過舉例,分數的基本性質與商不變性質之間存在著密切的聯系。分數的基本性質包括分子、分母的乘除運算、分數的加減運算等,這些性質在運算過程中保持不變。而商不變性質是指在整數除法中,被除數與商的乘積等于除數。通過分數與除數的關系,我們可以利用整數除法中商不變的性質來解釋分數的基本性質。因此,理解商不變性質有助于深入理解分數的基本性質。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
(四)、多層練習,鞏固深化
1.口答。(學生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數的基本性質中哪幾個字不相符。)
教學反思:
學生是學習的主人,教師是數學學習的組織者、引導者與合作者。因此數學課堂教學中必須把教師的教變成學生的學,必須深入研究學法,建立探究式的學習模式。教師應調動學生的學習積極性,向學生提供充分從事數學學習的機會,幫助他們在自主觀察、討論、合作、探究學習中真正理解和掌握基本的數學知識和技能,充分發揮學生的能動性和創造性。一個突出的特點就是學法的設計,從大膽猜想、實驗感知、觀察討論到概括總結,完全是為學生自主探究、合作交流的學習而設計的。具體表現在:
1、學生在故事情境中大膽猜想。
在一個熱帶島嶼上,有四只猴子發現了一堆香蕉。它們決定公平地分配這堆香蕉,但卻遇到了難題。最大的猴子自稱為“猴王”,要求先拿走一部分香蕉。其他三只猴子不甘心,于是提出了一個辦法:每只猴子輪流從香蕉堆中拿走一部分,直到香蕉被拿完為止。猴王同意了這個提議,于是開始了“猴王分餅”的游戲。第一只猴子拿走了1/4的香蕉,第二只猴子拿走了1/5的香蕉,第三只猴子拿走了1/3的香蕉。最后一只猴王拿走了剩下的30根香蕉。請問,最初這堆香蕉一共有多少根?
2、學生在自主探索中科學驗證。
在學生大膽猜想的基礎上,教師適時揭示猜想內容,并對學生的猜想提出質疑,激發學生主動探究的欲望。在探索“分數的基本性質”和驗證性質時,通過創設自主探索、合作互助的學習方式,由學生自行選擇用以探究的學習材料和參與研究的學習伙伴,充分尊重學生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學生用自己的方式來證明自己猜想結論的正確性,突現出課堂教學以學生為本的特性。整個教學過程以“猜想——驗證——完善”為主線,每一步教學,都強調學生自主參與,通過規律讓學生自主發現、方法讓學生自主尋找、思路讓學生自主探索,問題讓學生自主解決,使學生獲得成功的體驗,增強自信心。
3、讓學生在分層練習中鞏固深化。
在設計練習時,要緊扣重點,設計新穎多樣的題目,設置不同難度層次,讓學生在練習中逐步提高。首先是基礎練習,幫助學生理解概念,檢查他們對新知識的掌握情況;其次是鞏固練習,加深對知識的理解;最后是通過游戲激發學生的學習興趣,加深對知識的理解,活躍課堂氣氛。這樣設計不僅考慮到了學生認知發展的特點,也拓展了他們的思維空間,真正做到了理論聯系實際。
在教學過程中,我們應該注重引導學生思考,讓他們通過多種方法去驗證結論的正確性。我們不能局限于老師提供的幾種方法,而應該放手讓學生自由探索。數學教學的目的不是僅僅傳授答案,而是培養學生的思維能力。因此,我們應該鼓勵學生嘗試不同的途徑,去驗證和證明數學結論,從而激發他們的數學思維,培養他們的解決問題的能力。
分數的基本性質教學設計8
教學目標:
結合趣味故事經歷認識分數的基本性質的過程。
初步理解分數的基本性質,會應用分數的基本性質進行分數的改寫。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣
教學重點:理解掌握分數的基本性質。
教學難點:歸納分數的性質。
學生準備:長方形紙片。
一、創設故事情境,激發學生學習興趣并揭示課題。
編了一個唐僧師徒4人分西瓜的故事,利用孫悟空的機智聰明和豬八戒貪吃的特點。創設問題情境引起學生的探究興趣,通過把一個西瓜平均分成4塊,豬八戒吃了一塊,再把這西瓜平均分成8塊,豬八戒吃了2塊。最后把西瓜分16塊,豬八戒吃了4塊,設計這個故事的目的是使學生在已有生活經驗和分數知識的背景下,了解豬八戒沒有多吃到餅的事實,為理解分數的基本性質提供實踐經驗。在看完故事后向學生提問你了解到了哪些數學信息,想到了什么問題?
讓學生討論并用自己的方法說明八戒沒有多吃到餅。讓學生親自動手折一折、分一分、比一比,通過課件從直觀上讓學生感受到這三個分數大小是相等的。而這兩個分數的分子和分母都不相等,可分數卻相等,這其中有什么規律呢,從而來揭示課題。
二、小組合作,探究新知:
1、動手操作、形象感知
出示課件,讓學生觀察討論圖中分數的涂色部分是多少?
A、談話:請同學們拿出課前準備好的一張正方形的紙,你能先對折,并涂出它的1/4嗎?
B、追問:你能通過繼續對折,每次找一個和1/4相等的其他分數嗎?
C、學生操作,并組織交流:每次對折后,正方形被平均分成多少份。涂色部分有幾份。并思考可以用什么分數表示涂色的部分,得到的分數與1/4是否相等。交流時讓不同對折方法的學生充分展示。
2、觀察比較、探究規律
(1)通過動手操作,你認為它們誰大?請到展示臺上一邊演示一邊講一講。
(2既然這三個分數相等,那么我們可以用什么符號把它們連接起來?
(3)這三個分數的分子、分母都不相同,為什么分數的大小卻相等的?你們能找出它們的變化規律嗎?請同學們四人為一組,討論這兩個問題
(4)通過從左到右的觀察、比較、分析,你發現了什么?
使學生認識到這四個正方形同樣大,雖然平均分的份數不一樣,但陰影部分的面積相等,四個分數也相等。課件出示連等式子。
【通過展示不同的對折方法,使學生體會解決問題方法的多樣性,拓展學生的思維。】
3引導觀察:請大家觀察每個等式中的兩個分數,它們的分子、分母是怎樣變化的?
觀察思考后。在課文上填空,再在小組內交流。然后教師再集中指導觀察:
先從左往右看:1/4是怎樣變為與它相等的2/8的?由2/8到4/16,分子、分母又是怎樣變化的?誰用一句話說出它的變化規律?再從右往左看:4/16是怎樣變化成與之相等的'2/8的?2/8、1/4呢?用一句話說出它的變化規律?
4、歸納規律
提問:綜合以上兩種變化情況,誰能用一句話概括出其中的規律?
學生交流歸納,最后全班反饋“分數的分子和分母同時乘或除以相同的數﹙0除外﹚,分數的大小不變,這是分數的基本性質”
6、小結
同學們在這節課的學習中表現得很出色,說一說你有什么收獲或體會?
【通過小結,既對整個課堂學習的內容有一個總結,又能讓學生產生后續學習和探究的欲望,將學生的學習興趣延伸到了下節課】
四、鞏固強化,拓展應用
多樣的練習可以讓學生及時鞏固所學知識,又調動了學生學習的積極性。
五、游戲找朋友。
六、布置作業:
在上這課之前,認真備課,精心設計課堂思路,準備好教具。課前,活躍氣氛。開始可能是由于農村吧,基本上,上課都是用黑板,難得一次上課時利用多媒體上課的。學生對此也是很有興趣的,特別是在創設情景的時候,很開心的投入課堂氣氛來。緊接著動手操作等步驟都很好。唯一不足是學生沒感大膽發言。對于問題,答得不是很清晰。教師讓學生主動探索,逐步獲取規律,最后也都一一的解答并歸納分數的性質。對于從左到右的變化,分子分母都變大了,但分數大小不變。從右到左,分子分母都變小,分數大小不變。從而得出規律。對于這分數的性質要讓學生抓住幾個重點詞,“都”“乘以或除以”“相同的數”“零除外”重點讓學生熟記分數的性質。多層的鞏固練習。加深學生的理解。并且能運用分數的性質完成作業。最后,讓學生輕松愉快地應用著這節課所學的知識進行找朋友的游戲。
分數的基本性質教學設計9
設計說明
比的基本性質是在學生學習了比的意義,比與、除法的關系,商不變的性質和分數的的基礎上進行教學的。本課時在上有以下幾個特點:
1.自主探究,猜測驗證。
在教學比的基本性質的環節上,充分體現以學生為主的原則,鼓勵學生按照自己的思維規律,大膽猜想并通過舉例、論證等方法進行驗證,使學生經歷“大膽猜想——小心驗證——得出結論”的全過程,充分體驗到成功的快樂。
2.巧妙點拔,層層深入。
在應用比的基本性質化簡比時,盡量讓學生自主學習,步步深入,充分發揮教師在關鍵處的'點撥作用,使學生理解化簡比的意義,掌握化簡比的方法,同時能正確區分化簡比和求比值的不同之處。
學習目標
1.理解并掌握比的基本性質,能運用比的基本性質化簡比。
2.感悟知識之間的內在聯系,培養遷移、類推的能力,培養思維的靈活性。
3.經歷發現、總結比的基本性質的過程,培養與他人合作的意識和創新精神。
學習重點
理解比的基本性質,掌握化簡比的方法。
學習難點
利用比的基本性質化簡化,并能熟練地化簡整數、分數、小數比
一、復習導入(7分鐘)
1.復習。
什么叫比?比的各部分名稱是什么?
2.引導學生回憶比與分數、除法的關系。
3.商不變的性質是什么?你能舉例說明嗎?
4.分數的基本性質是什么?你能舉例說明嗎?
5.導入新課,板書課題。
二、探究新知(20分鐘)
1.探究比的基本性質。
(1)引導學生根據商不變的性質、分數的基本性質來猜測比的基本性質。
(2)驗證猜測的性質是否成立。
①指導學生,利用比和除法的關系,舉例、合作驗證。
②集體評價學生匯報的驗證過程和結果。
(3)教師根據學生的回答,總結比的基本性質。
(4)探討:為什么0除外?
2.探究化簡比的方法。
(1)PPT課件出示教材50頁例1。
引導學生自學,明確要求。
(2)組織學生根據例1(1)列出比,并自主化簡比,教師巡視指導。
(3)指名學生匯報板演,師生評價。
(4)出示例1(2),組織學生討論如何化簡分數比和小數比。
(5)組織學生小組討論。總結化簡比的方法。
3.探究化簡比和求比值的區別。組織學生討論化簡比和求比值的區別。
三、訓練深化(9分鐘)
1.鞏固訓練:完成教材第53頁第4、5題。(鞏固對比的基本性質的理解)
2.拓展提高:完成教材53頁第6題。(化簡比)
四、總結收獲(4分鐘)
分數的基本性質教學設計10
教學內容:人教版五年級數學下冊57頁內容及58、59頁練習。
教學目標:
知識與技能:通過教學使學生理解的掌握分數的基本性質,能運用分數的基本性質把一個分數化成指定分母(或分子)相同而大小不變的分數,并能應用這一性質解決簡單的實際問題。
過程與方法:引導學生在參與觀察、比較、猜想、驗證等學習活動的過程中,有條理,有根據地思考、探究問題,培養學生的抽象概括能力。
情感、態度和價值觀:使學生受到數學思想方法的熏陶,培養樂于探究的學習態度。
教學重點:理解和掌握分數的基本性質。
教學難點:應用分數的基本性質解決問題。
教學準備:預習生成單、作業紙、課件
教學課時:一課時
教學過程:
一、導入新課,揭示課題
1、師:通過昨天的預習,你知道我們今天要學習什么內容?(生:分數的基本性質)
2、師:針對這個內容,同學們做了充分的預習,相信你們一定提出了不同的數學問題,現在請組長帶領組員提煉出你們組最想研究的問題。
3、指名學生匯報。
4、師:同學們,不管你們提出什么樣的問題,都與分數的基本性質有關,今天我們就帶著這些問題走進課堂。
二、檢查預習,自主探究
1.出示預習生成單:(師:我們已經預習了這部分內容,請同學們組內交流一下你們的預習成果,形成統一意見準備匯報。)
2.指名上臺展示并匯報。(師:哪個組的同學愿意最先上來展示你們的成果?)
3.(學生展示中注意分工匯報,在匯報中要注意學生用比一比的方法證明涂色部分相等,如果有用分數的意義的理解“都是相同紙的一半”或者“分子是分母的一半”理解也要給予肯定,教師應及時提出,照這樣一半的理解,提問:你能在寫出一個和他們大小一樣的分數嗎?教師及時的板演,
4.師:其他同學還有補充嗎?你們得出這個結論了嗎?
三、合作交流,探究新知
1.師:第一張紙涂色部分是這張紙的(學生說二分之一),第二張紙涂色部分是這張的(四分之二),第三張紙涂色部分是這張紙的(八分之四),涂色部分都相同,也就證明這三個分數的大小也(學生說相等),可是,它們的分子分母卻不相同,他們有沒有一定的變化規律呢?我們通過合作交流來探究這個問題。
2.出示合作要求(課件),指名學生讀一讀。
3.學生合作交流,探究學習。
4.學生匯報中教師要及時糾正學生的語言要規范,同時,可以讓小組回想補充,特別是,跳躍的兩個分數的分子和分母之間的變化規律是怎樣?
5.指導匯報,總結規律。誰能完整的說一下你們剛才總結出的規律?
6.教師歸納板書:分數的分子和分母同時乘或者除以相同的數,分數的大小不變。
7.請同學們讀一讀這句話,想一想:還有需要補充的內容嗎?(0除外)
8.再讀一讀,說說這句話中哪個詞比較關鍵。
9.拓展深化,加深理解,完成練習,思考:分數的基本性質與商不變的性質之間的聯系。(練習一)這個過程也要看學生的生成在哪,教師及時的給予肯定。
9.教師小結:通過剛才的學習,孩子們的表現特別出彩,老師相信你們接下來的表現會更棒。
四、應用拓展,新知內化
1.出示例2,指名讀題,理解題意。
2.師:你覺得解決這道題應該利用什么知識?(生:分數的基本性質)
3.學生獨立在練習本上完成,指名板演,集體訂正。
4.小結:剛才,我們通過自主學習、小組探究知道了什么是分數的基本性質,下面就應用分數的基本性來解決一些實際問題。
五、當堂檢測
(一)、下面每組中的.兩個分數是否相等?相等的在括號里畫“√”,不相等的畫“X”。
和()和()和()和()
(二)、填空。
======
(三)、把下列分數化成分母是10而大小不變的分數。
===
(四)、涂色表示出與給定分數相等的分數。
(五)、如果一堂課40分鐘,哪個班做練習用的時間長?
六、課堂小結:通過這節課的學習,你學會了什么?
板書設計:
分數的基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
這節課最多的考慮就是分數的基本性質這個規律怎樣才能讓學生真正的夯實,怎樣設計才能讓學生水到渠成的加深了理解。在練習的設計和過渡語的設計都是關鍵。
分數的基本性質教學設計11
一、教學目標
1、使學生理解和掌握分數的基本性質,能應用分數的基本性質把一個分數化成指定分母而大小不變的分數。
2、學生通過觀察、比較、發現、歸納、應用等過程,經歷探究分數的基本性質的過程,初步學習歸納概括的方法。
3、激發學生積極主動的情感狀態,體驗互相合作的樂趣。
二、教學重點
1、理解、掌握分數的基本性質,能正確應用分數的基本性質。
2、自主探究出分數的基本性質。
三、教學準備
課件、正方形的紙
四、教學設計過程
(一)遷移舊知.提出猜想
1、回憶舊知
根據“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數÷除數=()
說一說你是根據什么算的?引導學生回憶商不變的性質?媒體出示:商不變的性質:
被除數和除數同時乘或除以相同的數(零除外),商不變。
2、提出猜想
既然分數與除法的關系這么緊密.除法有商不變性質,那分數是否也會有這樣的性質,請大家大膽猜想一下。(學生可能根據商不變性質推導出分數的基本性質,學生匯報后投影出示:分數的分子和分母同時乘或除以相同的數(零除外),分數的大小不變。)
(二)驗證猜想,建構新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學習提示。
學習提示
A、同桌合作,借助手中的學具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結束后,把你的驗證方法和結論與小組同學交流。
3、匯報交流
指名3到4名同學到講臺前與全班同學交流自己的驗證方法和過程,教師相機板書。
C、總結規律
1、師:請同學們看黑板上的兩組分數,說說它們的分子和分母分別是按什么規律變化的。指名回答,教師板書。
2、總結:對于任何一個分數,只要滿足:分數的分子和分母同時乘或除以相同的數,分數的大小就不會發生變化。
3、強調0除外。哪位同學將分數的分子和分母同時乘或除以0進行驗證的`?
如果有,問他是否驗證出猜想,驗證過程中出現了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規律:分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學生互相討論,并進行說明。)
教師以3/4為例說明分數的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。這叫做分數的基本性質。(板書課題)
D教學例2
把2/3和10/24都化為分母為12而大小不變的分數。
學生獨立完成,集體訂正。
(三)練習升華
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數寫在同一個圈里。
4、老師給出一個分數,同學們迅速說出和它相等的分數。
(四)作業
教材59頁第9題。
(五)思維拓展
(六)總結延伸
師:這節課你有什么收獲?
六、板書設計
分數基本性質
分數的分子和分母同時乘或除以相同的數(0除外),分數的大小不變。
分數的基本性質教學設計12
教學內容:蘇教版小學數學第十冊第95頁至97頁。
教學目標:
知識目標:通過教學使學生理解和掌握分數的基本性質,能利用它改變分數的分子和分母,而使分數的大小不變。
能力目標:培養學生的觀察能力、動手操作能力和分析概括能力等。
情感目標:讓學生在學習過程當中養成互相幫助、團結協作的良好品德。
教學準備:圓形紙片、彩筆、各種卡片。
教學過程:
一、創設情境,激發興趣
孫悟空有3根一模一樣的甘蔗,小猴子貝貝、佳佳、丁丁看見了,一哄而上,叫嚷著要吃甘蔗。孫悟空說: “好,貝貝分第一根甘蔗的,佳佳分第二根甘蔗的,丁丁分第三根甘蔗的。”貝貝、佳佳聽了,連忙說:“孫大圣,不公平,我們要分得和丁丁的同樣多。”孫悟空真的分得不公平嗎?(學生思考片刻)
【通過學生耳熟能詳的人物對話,給學生設計一個懸念,抓住學生的好奇心理,由此激發學生的學習興趣。】
二、動手操作 、導入新課
師:我們也來分分看。(學生拿出準備好的圓形紙片。)師:我們把三張紙片看成三塊餅,大家比比看,每人的三塊餅大小相等嗎?請拿出第一塊餅,我想要一塊,而且大小要是第一塊餅的一半,你能做到嗎?你給我的為什么是這塊餅的一半呢?用分數怎么表示呢?我現在想要兩塊,而且大小要跟剛才給我的餅一樣大,你又能做到嗎?用分數怎樣表示呢?我如果想要四塊,大小跟前兩次給我的一樣,你還能做到嗎?這次用分數又該怎樣表示呢?這三個分數大小相等嗎?為什么呢?這節課,我們就來研究這個數學問題。
【通過學生的動手操作,初步感知三個分數的大小相等,為尋找原因設置懸念,再次激發學生的學習興趣。】
三、觀察對比, 由“數”變 “式”
你們三次給我的餅大小相等嗎?那么這三個分數大小怎樣?可以用怎樣的式子表示?(==)(從這里你能看出,孫悟空分甘蔗,分得公平嗎?)
四、概括分析,由“式”變 “語”
⒈觀察一下這個式子,3個分數有什么不同?有什么地方相同?分數的大小為什么會不變呢?要弄清楚這個問題,我們必須先研究分數的分子、分母是怎樣變化的。
⒉先從左往右看,是怎樣變為與它相等的的?
(1)分母乘2,分子乘2。
根據分數的意義,""表示把單位"1"平均分成2份,取其中的1份,而現在把單位"1"平均分成4份,也就是把原兩份中的每一份又平均分成2份, 所以現在平均分成了2×2=4(份),現在要得跟原來的同樣多,必須取幾份?[1×2=2(份)]==
即原來把單位"1"平均分成2份,取1份,現在把平均分的份數和取的份數都擴大2倍,就得到。與的大小相等,分數值沒變。
(2)由到,分子、分母又是怎樣變化的?(把平均分的份數和取的.份數都擴大了4倍。)==
(3)誰能用一句話說出這兩個式子的變化規律?
⒊再從右往左看
(1) 是怎樣變化成與之相等的的?
原來把單位"1"平均分成4份,取其中的2份,現在把同樣的單位"1"平均分成2份,即把原來的每兩份合并成 1份,現在要取得跟原來的同樣多,只需取幾份?[2÷2=1(份)]也就是現在把平均分的份數和取的份數都縮小了2倍,得到,分數的大小沒有變。
==
(2) 又是怎樣變成的?(把平均分的份數和取的份數都縮小了4倍。)
==
(3)誰能用一句話說出這兩個式子的變化規律?
⒋綜合以上兩種變化情況,誰能用一句話概括出其中的規律?你覺得有什么要補充的嗎?(不能同時乘或除以0)為什么?
⒌這就是今天我們所學的“分數的基本性質”(板書課題,出示“分數的基本性質”)。
(1)理解概念。
學生讀一遍,你認為哪幾個字特別重要?(相同的數、0除外)相同的數,指一些什么數?為什么零除外?
(2)瘃木鳥診所。(請說出理由)
分數的分子和分母同時乘或者除以相同的數,分數的大小不變。( )
分數的分子和分母同時乘或者除以一個數(零除外),分數的大小不變。( )
分數的分子和分母同時乘或者除以相同的數(零除外),分數的大小不變。( )
⒍小結。
從判斷題中我們可以看出,分數的基本性質要注意什么?學到這兒,大家想一想,我們以前學過的什么性質跟分數的基本性質類似?誰能用整數除法中商不變的性質來說明分數的基本性質?
【此過程主要由學生通過觀察、比較,得出這三個分數大小相等的規律,由此牽引到其他的有同等規律的分數中,從而引出分數的基本性質:分子、分母是同時變化的,是同向變化的(是擴大都擴大,是縮小都縮小),是同倍變化的(擴大或縮小的倍數相同)。只有這樣變化,分數的大小才不會變。】
五、鞏固練習
⒈卡片練習:
⒉做P96“練一練”1、2。
⒊趣味游戲:
數學王國開音樂會,分數大家族的節目是女聲大合唱,只有幾分鐘就要演出了,請大家趕緊幫合唱隊的成員按要求排好隊。
要求:第一排是分數值等于的,第二排是分數值等于的,還有一位同學是指揮,他是誰?你是怎樣想的?
【通過練習,讓學生加深對分數的基本性質的理解,為下節課分數的基本性質的應用打好堅實的基礎。】
六、課堂總結
這節課你學到了什么?什么是分數的基本性質?你是怎樣理解的?
七、布置作業
做P97練習十八2。
分數的基本性質教學設計13
教材分析
1.分數基本性質是約分和通分的基礎,而約分、通分又是分數四則運算的重要基礎,因此,理解分數基本性質顯得尤為重要。而分數與除法的關系以及除法中的商不變規律,與這部分知識緊密聯系,是學習這部分內容的基礎。
2.教材安排了兩個學習活動,讓學生尋找相等的分數,通過活動使學生初步體驗分數的大小相等關系,為觀察發現分數的基本性質提供的豐富的學習資料,然后引導學生分別觀察這兩組相等的分數,尋找每組分數的分子、分母的變化規律,并展開充分的交流討論,在此基礎上歸納出:分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變。
學情分析
學生已明確商不變規律,分數與除法的關系等知識,這些都為本課學習做了知識上的鋪墊。五年級學生已經初步養成了合作學習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導下完成“質疑—探索——釋疑——應用”這一完整的學習過程。
因此在教學中,我主要采用引導學生探索以及小組合作學習相結合的方法,讓學生探索出分數的基本性質,并會運用分數的基本性質把一個分數化成分母不同但大小相等的分數,能有效地提高教學效率。
教學目標
經歷探索分數基本性質的過程,理解分數基本性質。
能運用分數基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點和難點
理解分數基本性質,能運用分數基本性質轉化分數。
教學過程
一、復習導入
二、探究新知
實踐操作,探究規律
觀察發現:初步概括分數基本性質
括歸納分數基本性質
三、課堂練習
四、課堂小結
出示復習題口答卡片, 復習商不變的規律、分數與除法的關系。1、 講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學們可知道誰吃的餅最多?”
提出問題: 這些分數都相等嗎?
觀察這組相等的分數,你發現了什么?把你的發現說給同伴聽。
分子、分母都乘或除以一個數,這個數可以是0嗎?為什么?
1、課本P43的“試一試”2、數學游戲:說出相等的分數3、課本P44的“練一練”第1~2、4
通過這節課的學習、你學會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數基本性質
復習舊知,為學習新知識作鋪墊。
將例1改編成故事 提出問題,讓學生對故事中的人物進行直觀評價,為后續探究營造良好氛圍。
讓學生通過實踐操作,激發學生參與學習探究的興趣,通過合作探究,初步感知有些分數的分子、分母不同,但分數的大小卻相等。
引導學生通過不同形式的觀察,逐步總結出存在的規律,這樣由淺入深,循序漸進,有利于學生探究學習知識。
在學生初步發現規律的基礎上,進一步理解分數的基本性質,并對分數的基本性質進行全面概括。
讓學生利用分數的基本性質解決問題,使學生對分數的基本性質理解的.更深刻,同時體驗解決問題的樂趣。
對本節課的所學知識的回顧,及所學知識點的總結。
板書設計(需要一直留在黑板上主板書)分數基本性質被除數和除數同時擴大或縮小相同的倍數(零除外),商不變,這就是商不變的規律分數的分子和分母都乘或除以相同的數(零除外),分數的大小不變,這叫做分數基本性質。
教學反思:
分數的基本性質在小學階段是數運算的又一次質的飛躍與擴展,是重要的一個環節。我在引導學生觀察探究中,重視學生的主動參與,多次組織學生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數的分子、分母是按一定的規律變化而分數大小不變。體現了理解與掌握數與數之間聯系、變化的觀點。
在本節課中,由于我對學困生關注度不高,,使得他們在分數基本性質應用的過程中產生了困難。小組合作探究中的小組學習亦要不斷地完善。
分數的基本性質教學設計14
一、教材分析:
本節課是在學生學習了分數與除法的關系的基礎上來學習的,學生了解了分子相當于被除數,分母相當于除數。通過觀察分子、分母的變化而分數值沒變這樣一個不完全歸納從而發現分數的基本性質。同時學生已經學過商不變規律再聯系到分數與除法的關系也可以類推出分數的基本性質,分數的基本性質和商不變規律是一致的。學生需通過觀察--探索--并抽象概括出分數的基本性質這就要求學生有較高的抽象概括能力。但這一要求對學困生來說就有點高了,所以在教學中應該兩種情況都要考慮到。
二、教學目標:
1、理解分數的基本性質。(學生總結出分數的基本性質后通過抓關鍵詞語并讓學生對這些詞語進行解釋,同時還通過舉反例來加深印象,在此基礎上我還出示了幾道判斷題來加深對分數基本性質的理解)。
2、初步掌握分數基本性質的應用。(主要活動是利用分數的基本性質把一個分數化成分母不同而大小相等的分數,后面闖關的前三關都是分數基本性質的的運用。)
3、培養學生觀察-探索- 抽象-概括的能力。(先讓學生猜1/2、2/4、3/6的大小并動手涂色觀察涂色部分是相等的于是得出1/2=2/4=3/6然后讓學生觀察這幾個分數的分子、分母是如何變化的并試著用筆算算探索出其中的變化規律,并在老師的引導下抽象概括出分數的基本性質。)
4、滲透事物是發展變化的,感知變與不變的辨證關系。(溝通商不變規律與分數的基本性質之間的聯系,得出分數的基本性質后讓學生知道分數的分子、分母變化分數值不一定變化。)
5、本節重點是理解分數的基本性質及運用分數的基本性質;本節難點是抽象概括出分數的基本性質。(通過抓分數基本性質的關鍵詞語及運用分數的基本性質來解決問題,運用分數基本性質闖關等活動來突出重點;通過讓學生猜想及動手驗證,并認真觀察分子、分母的變化情況從而抽象概括出分數的基本性質這一活動來突破難點。)
三、學習目標:
1、課目內容分解表
序號知 識 點學習水平
識記理解應用 綜合評價
1復習題引出猜想 - = - = -
√
2動手驗證猜想- = - = - 并配合多媒體演示
√√√
3小組合作找規律√√
4得出規律√√
5運用規律解決問題√
6協作闖關活動√√
2、學習水平描述表
知識點學習水平描述語句
行為動詞
1綜合猜一猜- 、- 、- 哪個分數大猜想
2運用動手驗證猜想實驗驗證
3理解應用探索變化規律探索
4綜合得出規律總結
5應用運用規律解決問題運用
6綜合應用協作闖關活動競爭協作學習
四、媒體的選擇與運用
1、設計思想
由于本節內容是比較抽象的,所以我在具體操作過程中讓學生變抽象為直觀,這主要借助了我們的多媒體,用多媒體形象直觀地演示這樣一個過程,同時在運用分數的基本性質,我采用多形式的闖關活動避開了單純的`計算,讓學生在活動中樂學、樂算。
2、媒體選用表
知識點媒體類型媒體的內容要點及來源媒體在教學中的作用
1大屏幕出示復習題(來源于電教館資源庫并用FLASH軟件進行整合)方便
2網絡投影播放涂紙條的教程(來源于天網里,也就是衛星接收的資源)生動、直觀
3大屏幕及實物投影出示例2及分數比較
大小的例題(自己設計)便于演示
4大屏幕及
題單闖關活動(大部分資源來源于天網和地網,但不是簡單的拿來用,而是把它重新整合設計成闖關的形式。)在場景中激發學生興趣
五 、學習環境的選擇
1、針對本節課的特點,采用的是模式二,以便師-生、生-生、生-機互動。
2、情境的類型,主要采用的是問題性情境讓學生帶著問題學習,激發學生的求知欲。
六、教學活動設計
1、學生獨立涂紙條的1/2、2/4、3/6(2-3分鐘)培養學生的動手能力讓學生通過動手發現這三個分數的大小是相等的。
2、小組合作觀察討論1/2、2/4、3/6的分子、分母的變化情況,探索出規律并抽象概括出分數的基本性質(3-5分鐘)培養學生的抽象概括能力。
3、小組合作溝通商不變規律于分數的基本性質之間的聯系(2-3分鐘)讓學生感知事物之間是相互聯系發展的。
4、闖關活動(8-10分鐘)加深學生對分數基本性質的理解,培養學生獨立解答問題的能力及競爭意識。
七、教學成果評價
1、形成型評價
作業評價:內容是利用分數的基本性質闖關;形式是師評、自評、生生互評。
學生回答問題:師評、生評。
小組合作討論:小組內部或小組之間的互評。
2、即時評價:在抽象出分數的基本性質這個環節比較困難,對學習較困難的學生應對加引導和鼓勵找到問題之所在,幫助他讓他體會到成功的喜悅。
八、教學過程
1、談話引入
2、復習鋪墊,引出猜想
3、新授
師:動手驗證猜想
生:用筆涂三張同樣大小紙條的- 、- 、-
師:播放動畫演示得出- = - = -
問題性情景:- 、- 、-三個分數的分子分母是按照什么規律變化的?
生:觀察交流
生:匯報,師板書過程
師:引導學生分段得出規律
生:總結出規律,并對照書上補充。(齊讀)
師:板書性質,并強調重點詞語,并出示有關判斷題。
生:用所學知識解決小華疑問。
師:分數基本性質與前邊學過的什么規律相似?
生:商不變規律。
生:利用商不變規律說明分數基本性質。
4、運用
師:利用分數基本性質把一個分數化成分母不同而大小相等的分數。
出示例2、學生填在書上,抽生上臺在多媒體上演示并說明理由。
生:比較分數大小。
師:出示書上習題
生:獨立思考并解答(集體訂正)
5、課堂小結
這節課我們主要研究了什么內容?分數的基本性質是什么?我們利用分數基本性可以做什么?
6、闖關活動
①師:了解闖關進度,對學生闖關活動進行監控。
②闖關完畢,演示第六關的解答過程(生述師演示)。
③情感教育。
九、環節預案
1、學生抽象概括出分數的基本性質這個環節比較抽象如果學生能順利就可以直接讓學生抓關鍵詞加深理解;如果學生不能總結出來師可以加以引導同時附加一些反例讓學生感知"同時"、"相同"、"0除外"這些詞語的意思,然后再引導學生用一句話表述出來,再做一些判斷題讓學生加深印象
2、溝通商不變規律與分數的基本性質時,學生如果不能清楚表示出來,則可以引導學生
被除數--分子
÷--分數線
除數--分母
在整數除法中被除數和除數同時擴大或縮小相同的數(0除外)商不變;所以分子、分母同時乘上或除以相同的數(0除外)分數的大小也不變。還可以再請一名學生復述。
3、闖關這個環節如果學生遇到了問題則可以讓這些學生說說自己存在的問題,同時可以讓學生對他進行幫助,也讓其體會到成功的喜悅。
十、板書設計
分數的基本性質
×
×2 ×3 ÷3 ÷2
- = - = - - = - = -
×2 ÷2
×3 ÷3
分數的分子和分母同時乘上或者除以一個相同的數(零除外)分數大小不變,這叫做分數的基本性質。
十一、教學流程圖
分數的基本性質教學設計15
教學目標
1、經歷探索分數的基本性質的過程,理解分數的基本性質。
2、能運用分數的基本性質,把一個分數化成指定分母(或分子)而大小不變的分數。
3、經歷觀察、操作和討論等學習活動,體驗數學學習的樂趣。
教學重點:
理解掌握分數的基本性質。
教學難點:
歸納性質
教學設計
(一)創設情境,引起學生參與興趣
1、猴王變戲法(學生模仿復習)
除法式子變形
分數與除法變形
2、教師出示三只可愛的小猴圖片,獎勵聽故事:
有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成兩塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊。”猴王就把第二塊餅平均切成四塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切6塊,分給第三只小猴三塊。
同學們,你知道哪只猴子分得的多嗎?(哪只猴子分得的多?讓學生發表自己的意見)
3、教師出示三塊大小一樣的.餅,通過師生分餅,觀察驗收后得出結論:三只猴子分得的餅一樣多。聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學們想知道有什么規律嗎?
(二)探究新知
1、動手操作、形象感知
請同學們拿出三張相同形狀同樣大的紙,把每張紙都看作一個整體。動手折出平均分的份數2份、4份、6份,動筆把其中的1份、2份、3份畫上陰影,再把陰影部分剪下來,將剪下的陰影部分重疊,比一比記錄下結論。
【分數的基本性質教學設計】相關文章:
分數的基本性質教學設計04-05
分數的基本性質教學設計04-13
(經典)分數的基本性質教學設計08-25
分數的基本性質優秀教學設計09-22
分數的基本性質教學設計通用【15篇】08-11
分數的意義和性質教學設計11-09
《分數的意義和性質》教學設計03-21
《比例的基本性質》教學設計07-02
《比例的基本性質》教學設計05-12
分數的意義和性質教學設計通用04-06