- 相關推薦
一次函數的概念優秀教學設計
作為一名教職工,編寫教學設計是必不可少的,教學設計以計劃和布局安排的形式,對怎樣才能達到教學目標進行創造性的決策,以解決怎樣教的問題。那么大家知道規范的教學設計是怎么寫的嗎?下面是小編為大家整理的一次函數的概念優秀教學設計,供大家參考借鑒,希望可以幫助到有需要的朋友。
一次函數的概念優秀教學設計1
教學目標:
1、理解一次函數與正比例函數的概念以及它們之間的關系;
2、能根據問題信息寫出一次函數的表達式,并會運用一次函數解決簡單的實際問題;
3、經歷一次函數概念的認識,和利用一次函數解決實際問題的過程,逐步認識利用函數觀點認識現實世界的意識和能力。
教學重點:
一次函數的概念以及一次函數和正比例函數的關系。
教學難點:
理解一次函數和正比例函數的關系。
教學方法:
引導發現、探究指導
學習方法:
自主學習、合作學習
教學工具:
多媒體
教學過程:
一、情景引入
母親節快到了,紅紅想送一大束康乃馨給媽媽,花店老板告訴她,若買10支以及10支以下,每支3元,買10支以上,超過的部分打8折,如果紅紅買了x支康乃馨(x>10),付給老板y元錢,請寫出y與x之間的函數關系式。
二、探究新知
1、下列問題中,變量之間的對應關系是函數關系嗎?如果是,請寫出函數解析式?
(1)有人發現,在20~25時蟋蟀每分鳴叫次數c與溫度t(單位:)有關且c的值約是t的7倍與35的差;
(2)一種計算成年人標準體重G(單位:kg)的方法是,以厘米為單位量出身高值h,再減常數105,所得差是G的值;
(3)某城市的市內電話的月收費額y(單位:元)包括月租費22元和撥打電話x min的計時費(按0.1元/min收取);
(4)把一個長10 cm,寬5 cm的矩形的長減少x cm,寬不變,矩形面積y(單位:cm2)隨x的值而變化。
2、這些函數解析式有哪些共同特征?
3、你能仿照正比例函數的概念,歸納總結出一次函數的概念嗎?
4、一次函數和正比例函數有什么關系?
三、展示歸納(學生做后,解答過程學生說老師寫,發動學生糾正和完善并總結歸納出一次函數的概念)
1、學生先用獨立思考,在進行小組討論,老師準備板書,巡回指導,了解情況;
2、學生逐一回答,其他學生逐一補充完善;
3、教師火龍點睛,強調關鍵。
四、練習鞏固(過渡語:了解了一次函數的概念之后下面老師就來檢驗一下同學們,看看同學們能判斷一個函數是一次函數嗎?)(每個練習先讓學生做,教師巡回指導,然后讓有一定問題的學生匯報展示,發動學生評價完善,教師強調關鍵地方,在進行下一個練習)
練習1下列函數中哪些是一次函數,哪些又是正比例函數?
(1)y=—8x;(2)y=—;(3)y=5 x+6;(4)y=—0.5x—1;
(5)y= —1;(6)y= —13;(7)y=2(x—4);(8)y=
練習2已知一次函數y=kx+b,當x=1時,y=5;當x=—1時,y=1。求k和b的值。
五、小結與歸納(由學生來陳述,百花齊放。教師不做限定,沒說到的,教師補充。)
1、通過本節課的學習,你有何收獲?
2、反思一下你所獲得的經驗,與同學交流!
六、作業:必做題:教科書第91頁第3題;
選做題:請寫出若干個變量y與x之間的函數解析式,讓同桌判斷是否是一次函數;如果是,請說出其一次項系數與常數項。
七、板書設計(以課堂生成為準)
八、課后反思:
在上一節課,學生整體感受了研究函數的`一般思路與方法,但在具體知識理解的深度上還是不夠,尤其作業上學生對概念中的自變量的次數理解不夠到位。在這節課的學習中,應當促進學生從整體把握的高度深刻的理解一次函數與正比例函數的概念以及它們之間的關系。在概念的學習中,教師對學生提供的經驗性材料太少,僅從正面入手不足以使學生真正理解概念,還必須從側面和反面來理解概念,通過多舉例,多練習來鞏固概念。
教學中,需要分清并抓住本質現象,鼓勵學生用自己的語言闡述自己的看法,學生在經歷大量源自實際背景下的解析式的分析比較后,抽象概括出它們的一般結構,從而形成一次函數的概念,教師在強調概念需要注意和容易出錯的地方。在知識的獲取過程中,始終交織著舊知與新知、變與不變、相同與不同的對立與統一,這些都觸動著學生對數學學習的情感。
另外,課前備學生是十分必要的,只有充分了解學生,課時盡量關注每一個學生,做到心中有學生,使每一個學生都參與課堂活動中來,讓他們感受到自己是這節課的主角,從而學習數學的積極性提高,降低兩極分化。
一次函數的概念優秀教學設計2
一、教材分析
函數是數學中最重要的概念之一,且貫穿在中學數學的始終,只有對概念作到深刻理解,才能正確靈活地加以應用。本課中學生對函數概念理解的程度會直接影響數學其它知識的學習,結合教學課程標準與學生的認知水平,函數的第一課應以函數概念的理解為中心進行教學。
二、學情分析
從學生知識層面看:學生在初中初步探討了函數的相關知識,通過高一“集合”的學習,對集合思想的認識也日漸提高,為重新定義函數提供了知識保證。
從學生能力層面看:通過以前的學習,學生已有一定的分析、推理和概括能力,初步具備了學習函數概念的基本能力。
三、教學目標
知識與技能:讓學生理解構成函數的三要素、函數概念的本質、抽象的函數符號f(x)的意義。
過程與方法:在教師設置的問題引導下,學生通過自主學習交流,反饋精講、當堂訓練,經歷函數概念的形成過程,滲透歸納推理的數學思想,發展學生的抽象思維能力。
情感態度價值觀:在學習過程中,學會數學表達和交流,體驗獲得成功的樂趣,建立自信心。
四、教學難重點重點:理解函數的概念;
難點:概念的形成過程及理解函數符號y = f (x)的含義。
[重難點確立的依據]:函數的概念抽象性都比較強,要求學生的理性認識的能力也比較高,對于剛剛升入高中不久的學生來說不易理解。而且由于函數在高考中可以以低、中、高擋題出現,所以近年來高考有一種“函數熱”的趨勢,所以本節的重點難點必然落在和函數的概念及函數符號的理解與運用上。
從多個角度創設多個問題情境,組織學生圍繞重點自主思考,讓學生自主、合作探索,體會函數概念的本質從而突破難點。
五、教法與學法選擇
充分尊重學生的主體地位,讓學生在教師設置的問題的引導下、通過自主學習等環節自主構建知識體系,自主發展數學思維,教師采用問題教學法、探究教學法、交流討論法等多種學習方法,充分調動學生的積極性。
六、教學過程設計引入
現實世界是充滿變化的,函數是描述變化規律的重要數學模型,也是數學的基本概念,也是基本思想,另外函數的概念也是不斷發展的。引出課題
問題提出
1、請回憶在初中我們學過那些函數?(學生回答老師補充)
2、回憶初中函數的定義是什么?一般地,設在一個變化過程中有兩個變量x、y,如果給定一個x值,相應地就確定了一個y值,那么我們稱y是x的函數,其中x是自變量,y是因變量。
知識探究一函數
給定兩個非空的數集A,B,如果按照某個對應關系f,對于集合A中的任何一個數x,在集合B中都有唯一確定的數f(x)與之對應,那么就把對應關系f叫做定義在集合A上的函數記作f:A→B或y=f(x),x∈A.其中,x叫做自變量,與x值相對應的f(x)值叫做函數值。 x的取值范圍稱為定義域,函數值f(x)的'取值范圍稱為值域。定義理解一y=f(x)
1.x是自變量,它是法則所施加的對象。
2.f是對應法則,它可以是解析式,可以是表格,也可以是圖像。
3.y=f(x)表示y是x的函數,不是f與x的乘積。f(x)只是函數值,f才是函數,()表示f對自變量x作用。
定義理解二唯一確定
通過三個例子和學生共同總結出:
1、函數中每個x與y的對應關系,可以是一對一,也可以是多對一,但不能是一對多,即y是唯一確定的
2.A中元素不能剩,B中元素可以剩下。
定義理解三定義域值域
根據定義,函數是兩個數集A,B間的對應關系
自變量的集合A叫做函數的定義域;函數值的集合{f(x)|x∈A}叫做函數的值域。例如:A={0,1,2},B={0,2,4,5},f:A→B f(x)=2x
定義域為{0,1,2},值域為{0,2,4}從而共同探究出:值域是集合B的子集
函數的三要素:
定義域、對應關系、值域;
函數的值域由函數的定義域和對應關系所確定;定義域相同,對應關系完全一致,則兩個函數相等。 f(x)=3x+1與f(t)=3t+1是同一個函數。 x2f(x)=x與f(x)=不是同一個函數。 x然后和學生共同探究常見的已學函數的定義域和值域:
知識探究二區間
(設a, b為實數,且a
例題:試用區間表示下列數集:
(1){x|x ≤ -1或5 ≤ x
(5){x|x≥0且x≠1}
練習作業:把常見的函數的定義域和值域用區間表示。
七、小結
1、用集合的語言描述函數的概念2.函數的三要素3.用區間表示數集
八、作業
1.P28練習1,2 2.P34習題2-1A組:1,2
【一次函數的概念優秀教學設計】相關文章:
《數列的概念》教學設計01-16
《一次函數》 教學設計03-28
一次函數的教學設計與反思07-10
二次函數概念教學設計07-02
有關一次函數教學設計與反思報告05-01
初中數學概念的教學設計(通用11篇)05-15
蟬教學設計優秀教學設計04-05
優秀教學設計02-24
掌聲教學設計 《掌聲》教學設計優秀07-16