两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

初中數學《勾股定理》教學設計

時間:2024-11-04 17:13:20 啟宏 教學設計 我要投稿
  • 相關推薦

初中數學《勾股定理》教學設計(通用6篇)

  作為一位優秀的人民教師,常常需要準備教學設計,借助教學設計可以促進我們快速成長,使教學工作更加科學化。那么應當如何寫教學設計呢?下面是小編精心整理的初中數學《勾股定理》教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。

初中數學《勾股定理》教學設計(通用6篇)

  初中數學《勾股定理》教學設計 篇1

  教學準備

  1、教學目標

  1.了解勾股定理的發現過程,掌握勾股定理的內容,會用面積法證明勾股定理。

  2.培養在實際生活中發現問題總結規律的意識和能力。

  3.介紹我國古代在勾股定理研究方面所取得的成就,激發學生的愛國熱情,促其勤奮學習。

  2、教學重點/難點

  1.重點:勾股定理的內容及證明。

  2.難點:勾股定理的證明。

  3、教學用具

  4、標簽

  教學過程

  設置情景問題,導入新課

  相傳2500年前,畢達哥拉斯有一次在朋友家里做客時,發現朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數量關系.(圖看幻燈片)

  數學家畢達哥拉斯的發現:SA+SB=SC

  引申到直角三角形

  讓學生畫一個直角邊為75px和100px的直角△ABC,用刻度尺量出AB的長。 以上這個事實是我國古代3000多年前有一個叫商高的人發現的,他說:“把一根直尺折成直角,兩段連結得一直角三角形,勾廣三,股修四,弦隅五。”這句話意思是說一個直角三角形較短直角邊(勾)的長是3,長的直角邊(股)的長是4,那么斜邊(弦)的長是5。

  再畫一個兩直角邊為5和12的直角△ABC,用刻度尺量AB的長。

  你是否發現32+42與52的關系,52+122和132的'關系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。

  對于任意的直角三角形也有這個性質嗎?

  我國漢代的數學家趙爽指出:四個全等的直角三角形如下拼成一個中空的正方形。

  通過位移的形式幻燈片展示

  總結:勾股世界

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數學家商高就提出,將一根直尺折成一個直角三角形,如果勾等于三,股等于四,那么弦就等于五。即“勾三、股四、弦五”。它被記載于我國古代著名的數學著作《周髀算經》中。在這本書中的另一處,還記載了勾股定理的一般形式。

  1945年,人們在研究古巴比倫人遺留下的一塊數學泥板時,驚訝地發現上面竟然刻有15組能構成直角三角形三邊的數,其年代遠在商高之前。

  相傳二千多年前,希臘的畢達哥拉斯學派首先證明了勾股定理,因此在國外人們通常稱勾股定理為畢達哥拉斯定理。

  例習題分析

  例1(補充)已知:在△ABC中,∠C=90°,∠A、∠B、∠C的對邊為a、b、c。

  求證:a2+b2=c2。

  分析:⑴讓學生準備多個三角形模型,最好是有顏色的吹塑紙,讓學生拼擺不同的形狀,利用面積相等進行證明。

  ⑵拼成如圖所示,其等量關系為:

  ⑶發揮學生的想象能力拼出不同的圖形,進行證明。

  ⑷ 勾股定理的證明方法,達300余種。這個古老的精彩的證法,出自我國古代無名數學家之手。激發學生的民族自豪感,和愛國情懷。

  例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的對邊為a、b、c。

  分析:左右兩邊的正方形邊長相等,則兩個正方形的面積相等。

  左邊和右邊面積相等,即化簡可證。

  課后習題

  1.勾股定理的具體內容是: 。

  2.如圖,直角△ABC的主要性質是:∠C=90°,(用幾何語言表示)

  ⑴兩銳角之間的關系:__________________ ;

  ⑵若D為斜邊中點,則斜邊中線 ____________;

  ⑶若∠B=30°,則∠B的對邊和斜邊:_____________ ;

  ⑷三邊之間的關系:_____________。

  3.△ABC的三邊a、b、c,若滿足,則_______ =90°;則∠B是 _____角; 若滿足,則∠B是 ______角。

  初中數學《勾股定理》教學設計 篇2

  課題:

  勾股定理

  課型:

  新授課

  課時安排:

  1課時

  教學目的:

  一、知識與技能目標理解和掌握勾股定理的內容,能夠靈活運用勾股定理進行計算,并解決一些簡單的實際問題。

  二、過程與方法目標通過觀察分析,大膽猜想,并探索勾股定理,培養學生動手操作、合作交流、邏輯推理的能力。

  三、情感、態度與價值觀目標了解中國古代的數學成就,激發學生愛國熱情;學生通過自己的努力探索出結論獲得成就感,培養探索熱情和鉆研精神;同時體驗數學的美感,從而了解數學,喜歡幾何。

  教學重點:

  引導學生經歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題

  教學難點:

  用面積法方法證明勾股定理

  課前準備:

  多媒體ppt,相關圖片

  教學過程:

  (一)情境導入

  1、多媒體課件放映圖片欣賞:勾股定理數形圖,1955年希臘發行的一枚紀念郵票,美麗的`勾股樹,2002年國際數學大會會標等。通過圖形欣賞,感受數學之美,感受勾股定理的文化價值。

  2、多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學習了今天的這節課后,同學們就會有辦法解決了。

  (二)學習新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個正方形面積有何關系?相傳2500年前,畢達哥拉斯(古希臘著名的哲學家、數學家、天文學家)有一次在朋友家做客時,發現朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數量關系。你能觀察圖中的地面,看看能發現什么?對于等腰直角三角形有這樣的性質:兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質呢?請大家畫一個任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時外圍三個正方形的面積是否也存在這種關系?通過這個觀察和驗算這個直角三角形外圍的三個正方形面積之間的關系,同學們發現了什么規律嗎?通過前面對兩個問題的驗證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

  (三)鞏固練習

  1、如果一個直角三角形的兩條邊長分別是6厘米和8厘米,那么這個三角形的周長是多少厘米?

  2、解決課程開始時提出的情境問題。

  (四)小結

  1、背景知識介紹

  ①《周髀算徑》中,西周的商高在公元一千多年前發現了“勾三股四弦五”這一規律;

  ②康熙數學專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創。

  2、通過這節課的學習,你會寫方程了嗎?你有什么收獲和體會?

  (五)作業練習18.1中的1、2、3題。板書設計:勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

  初中數學《勾股定理》教學設計 篇3

  教學目標

  1、知識與技能目標:探索并理解直角三角形的三邊之間的數量關系,通過探究能夠發現直角三角形中兩個直角邊的平方和等于斜邊的平方和。

  2、過程與方法目標:經歷用測量和數格子的辦法探索勾股定理的過程,進一步發展學生的合情推理能力。

  3、情感態度與價值觀目標:通過本節課的學習,培養主動探究的習慣,并進一步體會數學與現實生活的緊密聯系。

  教學重點

  了解勾股定理的由來,并能用它來解決一些簡單的問題。

  教學難點

  勾股定理的探究以及推導過程。

  教學過程

  一、創設問題情景、導入新課

  首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻,結合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數學家)在勾股定理方面的貢獻。

  出示課件觀察后回答:

  1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。

  正方形B中有_______個小方格,即B的面積為______個單位。

  正方形C中有_______個小方格,即C的面積為______個單位。

  2、你是怎樣得出上面的結果的?

  3、在學生交流回答的基礎上教師進一步設問:圖1—2中,A,B,C面積之間有什么關系?學生交流后得到結論:A+B=C。

  二、層層深入、探究新知

  1、做一做

  出示投影3(書中P3圖1—3)

  提問:

  (1)圖1—3中,A,B,C之間有什么關系?

  (2)從圖1—2,1—3中你發現什么?

  學生討論、交流后,得出結論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。

  2、議一議

  圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?

  (1)你能發現直角三角形三邊長度之間的關系嗎?在同學交流的基礎上,共同探討得出:直角三角形兩直角邊的`平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

  (2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學生測量后回答斜邊長為13)請大家想一想(2)中的規律,對這個三角形仍然成立嗎?

  3、想一想

  我們常見的電視的尺寸:29英寸(74厘米)的電視機,指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運用剛才所學的知識,檢驗一下電視劇的尺寸是否合格?

  三、鞏固練習。

  1、在圖1—1的問題中,折斷之前旗桿有多高?

  2、錯例辨析:△ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應滿足

  =25即:c=5辨析:

  (1)要用勾股定理解題,首先應具備直角三角形這個必不可少的條件,可本題三角形ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據。

  (2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。

  綜上所述這個題目條件不足,第三邊無法求得

  四、課堂小結

  鼓勵學生自己總結、談談自己本節課的收獲,以及自己對勾股定理的理解,老師加以糾正和補充。

  初中數學《勾股定理》教學設計 篇4

  教學目標

  知識與技能:

  了解勾股定理的一些證明方法,會簡單應用勾股定理解決問題

  過程與方法:

  在充分觀察、歸納、猜想的基礎上,探究勾股定理,在探究的過程中,發展合情推理,體會數形結合、從特殊到一般等數學思想。

  情感態度價值觀:

  通過對我國古代研究勾股定理的成就介紹,培養學生的民族自豪感。

  教學過程

  1、創設情境

  問題1國際數學家大會是最高水平的全球性數學學科學術會議,被譽為數學界的“奧運會”。2002年在北京召開了第24屆國際數學家大會。下圖就是大會會徽的圖案。你見過這個圖案嗎?它由哪些我們學習過的基本圖形組成?這個圖案有什么特別的含義?

  師生活動:教師引導學生尋找圖形中的直角三角形和正方形等,并引導學生發現直角三角形的.全等關系,指出通過今天的學習,就能理解會徽圖案的含義。

  設計意圖:本節課是本章的起始課,重視引言教學,從國際數學家大會的會徽說起,設置懸念,引入課題。

  2、探究勾股定理

  觀看洋蔥數學中關于勾股定理引入的視頻,讓我們一起走進神奇的數學世界

  問題2相傳2500多年前,畢達哥拉斯有一次在朋友家作客時,發現朋友家用轉鋪成的地面圖案反應了直角三角形三邊的某種數量關系,請你觀察下圖,你從中發現了什么數量關系?

  師生活動:學生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍色正方形與橙色正方形有哪些數量關系,教師參與學生的討論

  追問:由這三個正方形的邊長構成的等腰直角三角形三條邊長之間又有怎么樣的關系?

  師生活動:教師引導學生發現正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

  設計意圖:從最特殊的等腰直角三角形入手,便于學生觀察得到結論

  問題3:數學研究遵循從特殊到一般的數學思想,既然我們得到了等腰直角三角形三邊的這種特殊的數量關系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數量關系也同樣成立。

  師生活動:學生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結得出可以通過割、補兩種方法,求出其面積。

  初中數學《勾股定理》教學設計 篇5

  一、學生知識狀況分析

  本節將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學生了解空間圖形、對一些空間圖形進行展開、折疊等活動。學生在學習七年級上第一章時對生活中的立體圖形已經有了一定的認識,并從事過相應的實踐活動,因而學生已經具備解決本課問題所需的知識基礎和活動經驗基礎。

  二、教學任務分析

  本節是義務教育課程標準北師大版實驗教科書八年級(上)第一章《勾股定理》第3節。具體內容是運用勾股定理及其逆定理解決簡單的實際問題。當然,在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發展學生的分析問題、解決問題能力和應用意識;一些探究活動具體一定的難度,需要學生相互間的合作交流,有助于發展學生合作交流的能力。

  三、本節課的教學目標是:

  1.通過觀察圖形,探索圖形間的關系,發展學生的空間觀念.

  2.在將實際問題抽象成數學問題的過程中,提高分析問題、解決問題的能力及滲透數學建模的思想.

  3.在利用勾股定理解決實際問題的過程中,體驗數學學習的實用性.

  利用數學中的建模思想構造直角三角形,利用勾股定理及逆定理,解決實際問題是本節課的重點也是難點.

  四、教法學法

  1.教學方法

  引導—探究—歸納

  本節課的教學對象是初二學生,他們的參與意識教強,思維活躍,為了實現本節課的教學目標,我力求以下三個方面對學生進行引導:

  (1)從創設問題情景入手,通過知識再現,孕育教學過程;

  (2)從學生活動出發,順勢教學過程;

  (3)利用探索研究手段,通過思維深入,領悟教學過程.

  2.課前準備

  教具:教材、電腦、多媒體課件.

  學具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習本、文具

  五、教學過程分析

  本節課設計了七個環節.第一環節:情境引入;第二環節:合作探究;第三環節:做一做;第四環節:小試牛刀;第五環節:舉一反三;第六環節:交流小結;第七環節:布置作業.

  1.3勾股定理的應用:課后練習

  一、問題引入:

  1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

  2、勾股定理逆定理:如果三角形三邊長a,b,c滿足________,那么這個三角形是直角三角形

  1.3勾股定理的`應用:同步檢測

  1.為迎接新年的到來,同學們做了許多拉花布置教室,準備召開新年晚會,小劉搬來一架高2.5米的木梯,準備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應為( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小華和小剛兄弟兩個同時從家去同一所學校上學,速度都是每分鐘走50米.小華從家到學校走直線用了10分鐘,而小剛從家出發先去找小明再到學校(均走直線),小剛到小明家用了6分鐘,小明家到學校用了8分鐘,小剛上學走了個( )

  A.銳角彎B.鈍角彎C.直角彎D.不能確定

  3.如圖,是一個圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個小圓孔,則一條到達底部的直吸管在罐內部分a的長度(罐壁的厚度和小圓孔的大小忽略不計)范圍是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一個木工師傅測量了一個等腰三角形木板的腰、底邊和高的長,但他把這三個數據與其它的數據弄混了,請你幫助他找出來,是第( )組.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

  初中數學《勾股定理》教學設計 篇6

  一、教學任務分析

  勾股定理是平面幾何有關度量的最基本定理,它從邊的角度進一步刻畫了直角三角形的特點。學習勾股定理極其逆定理是進一步認識和理解直角三角形的需要,也是后續有關幾何度量運算和代數學習的必然基礎。《新版數學課程標準》對勾股定理教學內容的要求是:

  1、在研究圖形性質和運動等過程中,進一步發展空間觀念;

  2、在多種形式的數學活動中,發展合情推理能力;

  3、經歷從不同角度分析問題和解決問題的方法的過程,體驗解決問題方法的多樣性;

  4、探索勾股定理及其逆定理,并能運用它們解決一些簡單的實際問題。

  本節《勾股定理的應用》是北師大版八年級數學上冊第一章《勾股定理》第3節、具體內容是運用勾股定理及其逆定理解決簡單的實際問題、在這些具體問題的解決過程中,需要經歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發展學生的分析問題、解決問題能力和應用意識;有些探究活動具有一定的難度,需要學生相互間的合作交流,有助于發展學生合作交流的能力、

  本節課的教學目標是:

  1、能正確運用勾股定理及其逆定理解決簡單的實際問題。

  2、經歷實際問題抽象成數學問題的過程,學會選擇適當的數學模型解決實際問題,提高學生分析問題、解決問題的能力并體會數學建模的思想、

  教學重點和難點:

  應用勾股定理及其逆定理解決實際問題是重點。

  把實際問題化歸成數學模型是難點。

  二、教學設想

  根據新課標提出的“要從學生已有的生活經驗出發,讓學生親身經歷將實際問題抽象成數學模型并進行解釋和運用的同時,在思維能力情感態度和價值觀等方面得到進步和發展”的理念,我想盡量給學生創設豐富的實際問題情境 ,使教學活動充滿趣味性和吸引力,讓他們在自主探究,合作交流中分析問題,建立數學模型,利用勾股定理及其逆定理解決問題。在教學過程中,采用一題多變的形式拓寬學生視野,訓練學生思維的靈活性,滲透化歸的思想以及分類討論思想,方程思想等,使學生在獲得知識的同時提高能力。

  在教學設計中,盡量考慮到不同學習水平的學生,注意知識由易到難的層次性,在課堂上,要照顧到接受較慢的學生。使不同學生有不同的收獲和發展。

  三、教學過程分析

  本節課設計了七個環 《勾股定理的應用》教學設計節、第一環節:情境引入;第二環節:合作探究;第三環節:變式訓練;第四環節:議一議;第五環節:做一做;第六環節:交流小結;第七環節:布置作業。

  第一環節:情境引入

  情景1:復習提 問:勾股定理的語言表述以及幾何語言表達?

  設計意圖:溫習舊知識,規范語言及數學表達,體現

  數學的 嚴謹性和規范性。《勾股定理的應用》教學設計情景2: 腦筋急轉彎一個三角形的兩條邊是3和4,第三邊是多少?

  設計意圖:既靈活考察學生對勾股定理的理解,又增加了趣味性,還能考察學生三角形三邊關系。

  第二環節:合作探究(圓柱體表面路程最短問題)

  情景3:課本引例(螞蟻怎樣走最近)

  設計意圖:從有趣的生活場景引入,學生探究熱情高漲,通過實際動手操作,結合問題逆向思考,或是回想兩點之間線段最短,通過合作交流將實際問題轉化為數學模型從而利用勾股定理解決,在活動中體驗數學建模,培養學生與人合作交流的能力,增強學生探究能力,操作能力,分析能力,發展空間觀念、

  第三環節:變式訓練(由圓柱體表面路程最短問題逐步變為長方體表面的距離最短問題)

  設計意圖:將問題的條件稍做改變,讓學生嘗試獨立解決,拓展學生視野,又加深他們對知識的理解和鞏固。再將圓柱問題變為正方體長方體問題,學生有了之前的經驗,自然而然的將立體轉化為平面,利用勾股定理解決,此處長方體問題中學生會有不同的做法,正好透分類討論思想。

  第四環節:議一議

  內容:李叔叔想要檢測雕塑底座正面的AD邊和BC邊是否分別垂直于底邊AB,但他隨身只帶了卷尺:

  (1)你能替他想辦法完成任務嗎?

  (2)李叔叔量得AD長是30厘米,AB長是40厘米,BD長是50厘米,AD邊垂直于AB邊嗎?為什么?

  (3)小明隨身只有一個長度為20厘米的'刻度尺,他能有辦法檢驗AD邊是否垂直于AB邊嗎?BC邊與AB邊呢?

  設計意圖:

  運用勾股定理逆定理來解決實際問題,讓學生學會分析問題,正確合理選擇數學模型,感受由數到形的轉化,利用允許的工具靈活處理問題、

  第五環節:方程與勾股定理

  在我國古代數學著作《九章算術》中記載了一道有趣的問題,這個問題的意思是:有一個水池,水面是一個邊長為10尺的正方形,在水池的中央有一根新生的蘆葦,它高出水面1尺,如果把這根蘆葦垂直拉向岸邊,它的頂端恰好到達岸邊的水面,請問這個水池的深度和這根蘆葦的長度各是多 少尺?《意圖:學生可以進一步了解勾股定理的悠久歷史和廣泛應用,了解我國古代人民的聰明才智;學會運用方程的思想借助勾股定理解決實際問題。

  第六環節:交流小結內容:師生相互交流總結:

  1、解決實際問題的方法是建立數學模型求解、

  2、在尋求最短路徑時,往往把空間問題平面化,利用勾股定理及其逆定理解決實際問題、

  3、在直角三角形中,已知一條邊和另外兩條邊的關系,借助方程可以求出另外兩條邊。

  意圖:鼓勵學生結合本節課的學習談自己的收獲和感想,體會到勾股定理及其逆定理的廣泛應用及它們的悠久歷史

  第七環作業設計:

  第一道題難度較小,大部分學生可以獨立完成,第二道題有較大難度,可以交流討論完成。

【初中數學《勾股定理》教學設計】相關文章:

《勾股定理》教學設計06-16

初中數學教學設計05-22

數學初中教學設計02-21

初中數學優秀教學設計08-27

初中數學函數教學設計01-08

人教版初中數學教學設計03-29

初中數學優秀教學設計02-14

初中數學教學設計優秀02-17

初中數學教學設計集錦04-04

主站蜘蛛池模板: 东乌珠穆沁旗| 边坝县| 拉萨市| 平远县| 开原市| 宿州市| 陆河县| 新昌县| 海盐县| 巴彦县| 通榆县| 潜山县| 修武县| 芦溪县| 姜堰市| 荥阳市| 泗阳县| 泾源县| 临潭县| 黔西县| 迁安市| 吴忠市| 商丘市| 砀山县| 西和县| 沅陵县| 富阳市| 镇远县| 揭西县| 张家港市| 霍城县| 蕉岭县| 武平县| 顺义区| 鹤庆县| 西华县| 翼城县| 普格县| 临安市| 玛沁县| 南安市|