两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

數據挖掘論文

時間:2022-07-15 17:09:06 畢業論文范文 我要投稿

數據挖掘論文

  在現實的學習、工作中,許多人都寫過論文吧,通過論文寫作可以培養我們獨立思考和創新的能力。你知道論文怎樣寫才規范嗎?以下是小編收集整理的數據挖掘論文,僅供參考,大家一起來看看吧。

數據挖掘論文

數據挖掘論文1

  1數據挖掘技術和過程

  1.1數據挖掘技術概述

  發現的是用戶感興趣的知識;發現的知識應當能夠被接受、理解和運用。也就是發現全部相對的知識,是具有特定前提與條件,面向既定領域的,同時還容易被用戶接受。數據挖掘屬于一種新型的商業信息處理技術,其特點為抽取、轉化、分析商業數據庫中的大規模業務數據,從中獲得有價值的商業數據。簡單來說,其實數據挖掘是一種對數據進行深入分析的方法。因此,可以描述數據挖掘為:根據企業設定的工作目標,探索與分析企業大量數據,充分揭示隱藏的、未知的規律性,并且將其轉變為科學的方法。數據挖掘發現的最常見知識包括:

  1.1.1廣義知識體現相同事物共同性質的知識,是指類別特點的概括描述知識。按照數據的微觀特點對其表征的、具有普遍性的、極高概念層次的知識積極發現,是對數據的高度精煉與抽象。發現廣義知識的方法與技術有很多,例如數據立方體和歸約等。

  1.1.2關聯知識體現一個事件與其他事件之間形成的關聯知識。假如兩項或者更多項之間形成關聯,則其中一項的屬性數值就能夠借助其他屬性數值實行預測。

  1.1.3分類知識體現相同事物共同特點的屬性知識與不同事物之間差異特點知識。

  1.2數據挖掘過程

  1.2.1明確業務對象對業務問題清楚定義,了解數據挖掘的第一步是數據挖掘目的。挖掘結果是無法預測的,但是研究的問題是可預見的,僅為了數據挖掘而數據挖掘一般會體現出盲目性,通常也不會獲得成功。基于用戶特征的電子商務數據挖掘研究劉芬(惠州商貿旅游高級職業技術學校,廣東惠州516025)摘要:隨著互聯網的出現,全球范圍內電子商務正在迅速普及與發展,在這樣的環境下,電子商務數據挖掘技術應運而生。電子商務數據挖掘技術是近幾年來數據挖掘領域中的研究熱點,基于用戶特征的電子商務數據挖掘技術研究將會解決大量現實問題,為企業確定目標市場、完善決策、獲得最大競爭優勢,其應用前景廣闊,促使電子商務企業更具有競爭力。主要分析了電子商務內容、數據挖掘技術和過程、用戶細分理論,以及基于用戶特征的電子商務數據挖掘。

  1.2.2數據準備第一選擇數據:是按照用戶的挖掘目標,對全部業務內外部數據信息積極搜索,從數據源中獲取和挖掘有關數據。第二預處理數據:加工選取的數據,具體對數據的完整性和一致性積極檢查,并且處理數據中的噪音,找出計算機丟失的數據,清除重復記錄,轉化數據類型等。假如數據倉庫是數據挖掘的對象,則在產生數據庫過程中已經形成了數據預處理。

  1.2.3變換數據轉換數據為一個分析模型。這一分析模型是相對于挖掘算法構建的。構建一個與挖掘算法適合的分析模型是數據挖掘獲得成功的重點。可以利用投影數據庫的相關操作對數據維度有效降低,進一步減少數據挖掘過程中數據量,提升挖掘算法效率。

  1.2.4挖掘數據挖掘獲得的經濟轉化的數據。除了對選擇科學挖掘算法積極完善之外,其余全部工作都自行完成。整體挖掘過程都是相互的,也就是用戶對某些挖掘參數能夠積極控制。

  1.2.5評價挖掘結果這個過程劃分為兩個步驟:表達結果和評價結果。第一表達結果:用戶能夠理解數據挖掘得到的模式,可以通過可視化數據促使用戶對挖掘結果積極理解。第二評價結果:用戶與機器對數據挖掘獲得的模式有效評價,對冗余或者無關的模式及時刪除。假如用戶不滿意挖掘模式,可以重新挑選數據和挖掘算法對挖掘過程科學執行,直到獲得用戶滿意為止。

  2用戶細分理論

  用戶細分是指按照不同用戶的屬性劃分用戶集合。目前學術界和企業界一般接受的是基于用戶價值的細分理論,其不僅包含了用戶為企業貢獻歷史利潤,還包含未來利潤,也就是在未來用戶為企業可能帶來的利潤總和。基于用戶價值的細分理論選擇客戶當前價值與客戶潛在價值兩個因素評價用戶。用戶當前價值是指截止到目前用戶對企業貢獻的總體價值;用戶潛在價值是指未來用戶可能為企業創造的價值總和。每個因素還能夠劃分為兩個高低檔次,進一步產生一個二維的矩陣,把用戶劃分為4組,價值用戶、次價值用戶、潛在價值用戶、低價值用戶。企業在推廣過程中根據不同用戶應當形成對應的方法,投入不同的資源。很明顯對于企業來說價值用戶最重要,被認為是企業的玉質用戶;其次是次價值用戶,被認為是金質用戶,雖然數量有限,卻為企業創造了絕大部分的利潤;其他則是低價值用戶,對企業來說價值最小,成為鉛質用戶,另外一類則是潛在價值用戶。雖然這兩類用戶擁有較多的數量,但是為企業創造的價值有限,甚至很小。需要我們注意的是潛在價值用戶利用再造用戶關系,將來極有可能變成價值用戶。從長期分析,潛在價值用戶可以是企業的隱形財富,是企業獲得利潤的基礎。將采用數據挖掘方法對這4類用戶特點有效挖掘。

  3電子商務數據挖掘分析

  3.1設計問卷

  研究的關鍵是電子商務用戶特征的數據挖掘,具體包含了價值用戶特征、次價值用戶特征、潛在價值用戶特征,對電子商務用戶的認知度、用戶的需求度分析。問卷內容包括3部分:其一是為被調查者介紹電子商務的概念與背景;其二是具體調查被調查對象的個人信息,包含了性別、年齡、學歷、感情情況、職業、工作、生活地點、收入、上網購物經歷;其三是問卷主要部分,是對用戶對電子商務的了解、需求、使用情況的指標設計。

  3.2調查方式

  本次調查的問卷主體是電腦上網的人群,采用隨機抽象的方式進行網上訪問。一方面采用大眾聊天工具,利用電子郵件和留言的方式發放問卷,另一方面在大眾論壇上邀請其填寫問卷。

  3.3數據挖掘和結果

  (1)選擇數據挖掘的算法利用Clementine數據挖掘軟件,采用C5.O算法挖掘預處理之后數據。

  (2)用戶數據分析

  1)電子商務用戶認知度分析按照調查問卷的問題“您知道電子商務嗎?”得到對電子商務用戶認知情況的統計,十分了解20.4%,了解30.1%,聽過但不了解具體使用方法40.3%,從未聽過8.9%。很多人僅聽過電子商務,但是并不清楚具體的功能與應用方法,甚至有一小部分人沒有聽過電子商務。對調查問卷問題“您聽過電子商務的渠道是什么?”,大部分用戶是利用網了解電子商務的,占40.2%;僅有76人是利用紙質報刊雜志上知道電子商務的并且對其進行應用;這也表明相較于網絡宣傳紙質媒體推廣電子商務的方法缺乏有效性。

  2)電子商務用戶需求用戶希求具體是指使用產品服務人員對應用產品或服務形成的需求或者期望。按照問題“假如你曾經使用電子商務,你覺得其用途怎樣,假如沒有使用過,你覺得其對自己有用嗎?”得到了認為需要和十分需要的數據,覺得電子商務有用的用戶為40.7%,不清楚是否對自己有用的用戶為56.7%,認為不需要的僅有2.4%。

  3)電子商務用戶應用意愿應用意愿是指消費者對某一產品服務進行應用或者購買的一種心理欲望。按照問題“假如可以滿足你所關心的因素,未來你會繼續應用電子商務嗎?”獲得的數據可知,在滿足各種因素時,將來一年之內會應用電子商務的用戶為78.2%,一定不會應用電子商務的用戶為1.4%。表明用戶形成了較為強烈的應用電子商務欲望,電子商務發展前景很好。基于用戶特征的電子商務數據研究,電子商務企業通過這一結果能夠更好地實行營銷和推廣,對潛在用戶積極定位,提高用戶體驗,積極挖掘用戶價值。分析為企業準確營銷和推廣企業提供了一個有效的借鑒。

  4結語

  互聯網中數據是最寶貴的資源之一,大量數據中包含了很大的潛在價值,對這些數據深入挖掘對互聯網商務、企業推廣、傳播信息發揮了巨大的作用。近些年來,數據挖掘技術獲得了信息產業的極大重視,具體原因是出現了大量的數據,能夠廣泛應用,并且需要轉化數據成為有價值的信息知識。通過基于用戶特征的電子商務數據挖掘研究,促使電子商務獲得巨大發展機會,發現潛在用戶,促使電子商務企業精準營銷。

數據挖掘論文2

  摘 要:高度開放的中國金融市場,特別是中國銀行業市場受到日趨激烈的國外銀行沖擊和挑戰,大多數銀行企業都在構建以客戶為中心的客戶關系管理體系,這一經營體系理念的構建,不僅僅能提高企業的知名度和顧客的滿意度,而且能提高企業的經濟效益。但是,隨著網絡技

  關鍵詞:客戶關系管理畢業論文

  高度開放的中國金融市場,特別是中國銀行業市場受到日趨激烈的國外銀行沖擊和挑戰,大多數銀行企業都在構建以客戶為中心的客戶關系管理體系,這一經營體系理念的構建,不僅僅能提高企業的知名度和顧客的滿意度,而且能提高企業的經濟效益。但是,隨著網絡技術和信息技術的發展,客戶關系管理如何能結合數據挖掘技術和數據倉庫技術,增強企業的核心競爭力已經成為企業亟待解決的問題。因為,企業的數據挖掘技術的運用能夠解決客戶的矛盾,為客戶設計獨立的、擁有個性化的數據產品和數據服務,能夠真正意義上以客戶為核心,防范企業風險,創造企業財富。

  關鍵詞:客戶關系管理畢業論文

  一、數據挖掘技術與客戶關系管理兩者的聯系

  隨著時代的發展,銀行客戶關系管理的發展已經越來越依賴數據挖掘技術,而數據挖掘技術是在數據倉庫技術的基礎上應運而生的,兩者有機的結合能夠收集和處理大量的客戶數據,通過數據類型與數據特征,進行整合,挖掘具有特殊意義的潛在客戶和消費群體,能夠觀察市場變化趨勢,這樣的技術在國外的銀行業的客戶關系管理廣泛使用。而作為國內的銀行企業,受到國外銀行業市場的大幅度沖擊,顯得有些捉襟見肘,面對大量的數據與快速發展的互聯網金融體系的沖擊,銀行業缺乏數據分析和存儲功能,往往造成數據的流逝,特別是在數據的智能預測與客戶關系管理還處于初步階段。我國的銀行業如何能更完善的建立客戶關系管理體系與數據挖掘技術相互融合,這樣才能使得企業獲得更強的企業核心競爭力。

  二、數據挖掘技術在企業客戶關系管理實行中存在的問題

  現今,我國的金融業發展存在著數據數量大,數據信息混亂等問題,無法結合客戶關系管理的需要,建立統一而行之有效的數據歸納,并以客戶為中心實行客戶關系管理。

  1.客戶信息不健全

  在如今的銀行企業,雖然已經實行實名制戶籍管理制度,但由于實行的年頭比較短,特別是以前的數據匱乏。重點體現在,銀行的客戶信息采集主要是姓名和身份證號碼,而對于客戶的職業、學歷等相關信息一概不知,極大的影響了客戶關系管理體系的構建。另外,數據還不能統一和兼容,每個系統都是獨立的系統,比如:信貸系統、儲蓄系統全部分離。這樣存在交叉、就不能掌握出到底擁有多少客戶,特別是那些需要服務的目標客戶,無法享受到銀行給予的高質量的優質服務。

  2.數據集中帶來的差異化的憂慮

  以客戶為中心的客戶關系管理體系,是建立在客戶差異化服務的基礎上的,而作為銀行大多數以數據集中,全部有總行分配,這樣不僅不利于企業的差異化服務,給顧客提供優質得到個性化業務,同時,分行也很難對挖掘潛在客戶和分析客戶成分提供一手的數據,損失客戶的利益,做到數據集中,往往是不明智的選擇。

  3.經營管理存在弊端

  從組織結構上,我國的銀行體系設置機構龐雜,管理人員與生產服務人員脫節現象極其普遍,管理人員不懂業務,只是一味的抓市場,而沒有有效的營銷手段,更別說以市場為導向,以客戶為核心,建立客戶關系管理體系。大多數的人完全是靠關系而非真正意義上靠能力,另外,業務流程繁瑣,不利于客戶享受更多的星級待遇,這與數據發掘的運用背道而馳,很難體現出客戶關系管理的價值。

  三、數據挖掘技術在企業的應用和實施

  如何能更好的利用數據挖掘技術與客戶關系管理進行合理的搭配和結合是現今我們面臨的最大問題。所有我們對客戶信息進行分析,利用模糊聚類分析方法對客戶進行分類,通過建立個性化的信息服務體系,真正意義的提高客戶的價值。

  1.優化客戶服務

  以客戶為中心提高服務質量是銀行發展的根源。要利用數據挖掘技術的優勢,發現信貸趨勢,及時掌握客戶的需求,為客戶提高網上服務,網上交易,網上查詢等功能,高度體現互聯網的作用,動態挖掘數據,通過智能化的信貸服務,拓寬銀行業務水平,保證客戶的滿意度。

  2.利用數據挖掘技術建立多渠道客戶服務系統

  利用數據挖掘技術整合銀行業務和營銷環節為客戶提供綜合性的服務。采用不同的渠道實現信息共享,針對目標客戶推薦銀行新產品,拓寬新領域,告別傳統的柜臺服務體系,實行互聯網與柜臺體系相結合的多渠道服務媒介體系。優化客戶關系管理理念,推進營銷戰略的執行。提高企業的美譽度。

  四、數據挖掘技術是銀行企業客戶關系管理體系構建的基礎

  隨著信息技術的不斷發展,網絡技術的快速推進,客戶關系管理體系要緊跟時代潮流,緊密圍繞客戶為中心,利用信息優勢,自動獲取客戶需求,打造出更多的個性化、差異化客戶服務理念,使得為企業核心競爭能力得到真正意義的提高。

數據挖掘論文3

  隨著互聯網技術的迅速發展,尤其移動互聯網的爆發性發展,越來越多的公司憑借其備受歡迎的系統和APP如雨后春筍般發展起來,如滴滴打車、共享單車等。海量數據自此不再是Google等大公司的專利,越來越多的中小型企業也可以擁有海量數據。如何從浩如煙海的數據中挖掘出令人感興趣和有用的知識,成為越來越多的公司急需解決的問題。因此,他們對數據挖掘分析師求賢若渴。在這一社會需求下,培養出優秀的數據挖掘分析師,是各個高校目前急需完成的一項任務。

  一、教學現狀反思

  目前,各大高等院校本科階段爭相開設數據挖掘課程。然而,該課程是一門相對較新的交叉學科,涵蓋了概率統計、機器學習、數據庫等學科的知識內容,難度較大。因此,大部分高校一般將此課程開設在研究生階段,在本科生中開設此課程的學校相對較少。另外,不同的學校將其歸入不同的專業中,如計算機專業、信息管理專業、統計學、醫學等。可以說,這一課程基本上處于探索的過程中。我院災害信息系于20xx年在信息管理與信息系統本科學生中首次開設了該課程。通過開設此課程,學生能夠掌握數據挖掘的基本原理和各種挖掘算法等,掌握數據分析和處理、高級數據庫編程等技能,達到數據聚類、分類、關聯分析的目的。然而,通過前期教學過程,我們發現教學效果不理想,存在很多問題。

  1.數據內驅力差

  以往數據挖掘課程重點講授數據挖掘算法,對數據源的獲取和處理極少獲取。目前各大教材都在使用一些公共數據資源,這些數據資源有些已經非常陳舊了,比如20世紀80年代的加州房價數據。這些數據脫離現實,分析這些數據,學生沒有任何興趣和學習動力,也就無法發現價值。

  2.過于強調學習數據挖掘理論及算法的學習

  大量具有難度的數據挖掘算法的學習,使學生喪失了學習興趣,學完即忘,不知所用。

  3.忽視對數據預處理過程的學習

  以往所使用的公共數據源或軟件自帶數據源,數據量小,需要的預處理工作比較少;這部分內容基本只安排一次理論課、一次實驗課。而實際通過爬蟲獲取的數據源數據量大;這部分工作量比較大,需要占到整個數據挖掘工作量的一半以上。因此,一次理論課和一次實驗課是無法讓學生掌握數據預處理技能的。

  4.算法編程實現難度較大

  要求學生學習一門新的編程語言,如R語言、Python語言,對本科非計算機專業的學生來說難度是非常大的,尤其是課時安排只有48課時。

  5.數據挖掘分析及應用技能較差

  學生能夠理解課堂案例,但在實際應用中,無法完成整個數據分析流程。

  二、數據挖掘課程改革

  該課程的教學對象是信息管理與信息系統專業本科大四學生。因此,培養實際應用人才,使其完成整個實際數據挖掘分析流程是教師的教學目的。筆者對智聯招聘、中華英才網、51job等幾個大型招聘網站的幾百個數據挖掘分析師相關職位進行分析,主要分析了相關職位的工作內容、職位要求以及需求企業。數據分析師主要利用數據挖掘工具對運營數據等多種數據源進行預處理、建模、挖掘、分析及優化。該職位是受業務驅動的,特點是將現有數據與業務相結合,最大程度地變現數據價值。該職位對計算機編程等相關技術不作要求,但是需要有深厚的數據挖掘理論基礎,熟練使用主流的數據挖掘(或統計分析)工具。基于此,教師可以采取以下策略進行教學改革。

  1.加強對業務數據的理解

  數據挖掘分析師是受業務驅動的,所以要理解實際業務,明確本次數據挖掘要解決什么問題。教師可以構建案例庫,包括教師案例庫、學生討論案例庫。教師案例庫由教師構建,可用于課堂講授。學生案例庫由學生分組構建,并安排討論課,由學生講述、討論并提交報告。

  2.加強對數據的獲取

  對學生感興趣的數據源進行挖掘,這樣才能更好地幫助學生理解吸收知識。因此,可以教授學生爬蟲技術,編寫爬蟲程序,使其自主獲取感興趣的數據。

  3.加強對數據的預處理工作

  在數據挖掘之前使用數據預處理技術,能夠顯著提高數據挖掘模式的質量,降低實際挖掘所需要的時間,應將其作為整門課程的重點進行學習。增加理論課程和實驗課時,使學生掌握數據清理、數據集成、數據變換、數據歸納等數據預處理技術,并能夠應對各種復雜數據源,最終利用爬蟲程序獲取的各種數據源進行預處理工作。

  4.強化數據挖掘分析

  教師可以選擇SPSS Modeler這款所見即所得的數據挖掘軟件作為配套實驗平臺。該軟件具有必需的數據預處理工具及預設的挖掘算法,學生可以把注意力放在要挖掘的數據及相關需求上,設定挖掘的主題,然后通過鼠標的點擊拖拉即可完成相關主題的數據挖掘過程。學生最終可對自己獲取并已處理過的數據進行挖掘分析。

  5.加強教師外出培訓學習

  數據挖掘技術以及大數據技術是近來比較新穎而且發展迅速的技術。教師長期身處三尺講臺之上,遠離了新技術,脫離了實際。因此,需派遣教師到知名高校學習數據挖掘教學技術,到培訓機構進行系統學習,到企業進行實戰學習。

  基于以上分析,形成了新的數據挖掘理論課程內容和實踐課程內容,安排如表1和表2所示。共安排48學時,其中理論課24學時,實驗課24學時。理論課重點講授數據的獲取、數據的理解、數據的預處理以及常用挖掘算法。實驗課重點學習基于SPSS modeler的數據挖掘,對理論課的內容進行實踐。整個學習以工程項目為載體,該工程貫穿整個學習過程。學生通過爬蟲程序獲取自己感興趣的數據源,根據課程進度,逐步完成后續數據的理解,再進行預處理,建模分析,評估整個過程。在課程結束時,完成整個項目,并提交報告。

  三、結論

  在數字時代,越來越多的企業急需數據挖掘分析人才。教師應以培養實際應用人才為目的,充分培養學生對數據挖掘的學習興趣,以工程項目為載體,貫穿整個課程周期。在教學中,打牢數據獲取、理解預處理這一基石,加強建模挖掘分析,弱化對晦澀算法的編程學習,使學生真正掌握數據挖掘技術,滿足社會需求。

  參考文獻:

  [1]李海林.大數據環境下的數據挖掘課程教學探索[J].計算機時代,20xx(2):54-55.

  [2]宋威,李晉宏.項目驅動的數據挖掘教學模式探討[J].中國電力教育,20xx(27):116-177.

  [3]徐琴.應用型本科數據挖掘技術課程教學探討與實踐[J].電腦知識與技術,20xx,12(8):148-149.

  [4]李姍姍,李忠.就業需求驅動下的本科院校數據挖掘課程內容體系探討[J].計算機時代,20xx(2):60-61.

數據挖掘論文4

  摘要:隨著我國社會經濟的不斷發展,人力資源管理也受到越來越多人們的重視,然而在如今激烈的市場競爭下很多企業依然不重視人力資源管理,從而使得自身的整體工作效率不高。為此,筆者認為為了提高礦建人力資源管理的質量,應采取數據挖掘技術來開展工作,從而讓整個企業在激烈的市場競爭中穩定、長久發展下去。

  關鍵詞:數據挖掘技術;企業人力資源管理;應用

  1、數據挖掘技術在企業人力資源管理中應用的現狀

  隨著我國人力資源管理體系的不斷發展,隱藏在管理工作中的問題也被逐漸顯露出來,雖然很多企業的高層管理者對人力資源管理這塊已經高度重視,但是企業往往是希望通過運用相關的系統來對人才進行管理,基于我國社會整體經濟實力的不斷發展以及互聯網信息時代的到來,數據挖掘技術也受到越來越多的企業多關注,并紛紛采用該技術對自身人力資源進行管理,同時也將人力資源管理系統作為整個信息化建設過程中的核心部位,就數據調查顯示,數據挖掘技術已經被國外很多軟件開放式引入自身的人力資源管理工作中,并使自身內部逐步形成了一套完整的人力資源管理系統體系。除此之外,數據挖掘技術也被廣泛應用在企業的基本人力資源檔案管理工作中,隨著信息技術時代的到來,以往傳統的計算機管理模式對人力資源管理效率往往并不高,為此,數據挖掘技術對企業人力資管理工作是百利而無一害的。

  2、數據挖掘技術在企業人力資源管理中的應用

  2、1人才的招聘

  任何企業在發展過程中都是離不開新鮮血液注入的,隨著目前我國市場經濟競爭趨勢的不斷增長,企業要想穩固發展必須要引入人力資源管理,只有這樣才能提高企業經濟效益以及社會收益。為此,企業應對人才進行招聘,這也是獲取人力資源的重要手段,通過采用數據挖掘技術來吸引社會中的各類人才,并采取有效的人才管理流程來對人才進行篩選,最終選擇質量最佳的人才資源。與此同時,企業對人才招聘質量的優與良對自身內部的員工、人類資源也會造成一定的影響,換句話來講,人才的招聘往往是企業人力資源管理工作開展的前期階段,然而在實際人才招聘過程中很多企業總是找不到合適的人選,同時也有大量的優質人才也很難找的適合自身的工作,這也就加大了企業人才招聘的難度,也進一步加大了招聘的成本,為此,企業采取數據挖掘技術可以有效降低人才招聘的成本支出,從而使自身獲得更大的經濟收益與社會利益。

  2、2對人才的管理

  隨著社會對人才需求量的不斷增加,企業對員工的數據記錄和管理方式也逐步優化,然而在很多企業人力資源管理過程中仍然存在著諸多問題,而這些問題的存在對企業未來發展也產生阻礙作用。為了企業在未來發展道路上穩固、長久發展,應采取數據挖掘技術來對人才進行管理,以往傳統的管理模式往往是對員工的基本信息以及日常考核進行管理,這種管理方式已經不適應現在時代發展的趨勢,為此,礦建企業必要順應當下時代的發展趨勢來采取有效的措施來對人力資源進行管理,現代化的管理模式主要強調的是對相關數據的分析和整理能力,通過對數據的分析來形成具有實際指導作用的總結,從而為企業人力資源管理工作提供有價值的參考依據。例如,在實際人力資源管理過程中可以利用數據挖掘技術來對企業內部員工的薪資水平進行分析,并對企業的成本控制提出有效的建議,也可以利用數據挖掘技術對企業中年紀較大的員工進行分析,并對其進行科學的評判,從而對其提出更有利的參考價值和依據。

  2、3實現對企業人才的合理分配

  隨著我國社會經濟的不斷發展,人才的發展形勢也變得越來越“多元化”“個體化”。為此,筆者認為為了進一步提高礦建企業人力資源管理工作的質量,應采取數據挖掘技術來對人才進行合理分配,并結合內部員工的實際特點以及具體類型進行客觀性的評判,這對企業的人才資源管理以及未來發展無疑是百利無一害的。通過采取數據挖掘技術不僅可以實現對員工的共性以及特點進行分析,使每一位員工的信息資源、崗位職責得到有效劃分,同時也進一步實現對企業人才的合理分配。通過對數據信息的管理技術構建實現對人員分組,從而使數據挖掘技術在企業人力資源管理中得到有效利用,使其發揮最大的作用與價值,同時也進一步提高企業人力資源管理工作的效率和和質量,最終推動企業穩固、長久的發展。

  3、結語

  綜上所述,隨著社會經濟的飛速發展,建設領域也得到逐步提高,然而在人力資源管理工作中依然存在著諸多問題,這些問題的存在也嚴重阻礙我國社會經濟的穩固發展。所以,只有充分采用數據挖掘技術來開展人力資源管理工作,才能提高企業的人力資源管理水平。

  參考文獻:

  [1]曾巍、數據挖掘在人力資源市場中的應用與研究[D].吉林大學,20xx

  [2]賴華強,王三銀,仲崇高、人力資源管理領域的數據挖掘應用展望———以基于灰色關聯模型的離職管理實證分析為例[J].江蘇商論.20xx(08):42—47

  [3]馬秦,張江、數據挖掘技術在企業人力資源管理中應用的研究[J].中國新通信,20xx.20(15):232

  [4]孫明標、基于大數據挖掘技術下的企業人力資源管理研究[J].現代營銷(下旬刊).20xx(01):166

數據挖掘論文5

  摘要:在電子商務中運用數據挖掘技術,對服務器上的日志數據、用戶信息和訪問鏈接信息進行數據挖掘,有效了解客戶的購買欲望,從而調整電子商務平臺,最終實現利益更大化。本文旨在了解電子商務中的數據源有哪些,發掘數據挖掘在電子商務中的具體作用,從而為數據挖掘的具體設計奠定基礎。

  關鍵詞:數據挖掘電子商務數據源

  一、電子商務中數據挖掘的數據源

  1.服務器日志數據客戶在訪問網站時,就會在服務器上產生相應的服務器數據,這些文件主要是日志文件。而日志文件又可分為Ser-vicelogs、Errorlogs、Cookielogs。其中Servicelogs文件格式是最常用的標準公用日志文件格式,也是標準組合日志文件格式。標準公用日志文件的格式存儲關于客戶連接的物理信息。標準組合日志文件格式主要包含關于日志文件元信息的指令,如版本號,會話監控開始和結束的日期等。在日志文件中,Cookielogs日志文件是很重要的日志文件,是服務器為了自動追蹤網站訪問者,為單個客戶瀏覽器生成日志[1]。

  2.客戶登記信息

  客戶登記信息是指客戶通過Web頁輸入的、并提交給服務器的相關用戶信息,這些信息通常是關于用戶的常用特征。

  在Web的數據挖掘中,客戶登記信息需要和訪問日志集成,以提高數據挖掘的準確度,使之能更進一步的了解客戶。

  3.web頁面的超級鏈接

  輔之以監視所有到達服務器的數據,提取其中的HTTP請求信息。此部分數據主要來自瀏覽者的點擊流,用于考察用戶的行為表現。網絡底層信息監聽過濾指監聽整個網絡的所有信息流量,并根據信息源主機、目標主機、服務協議端口等信息過濾掉垃圾數據,然后進行進一步的處理,如關鍵字的搜索等,最終將用戶感興趣的數據發送到給定的數據接受程序存儲到數據庫中進行分析統計。

  二、Web數據挖掘在電子商務中的應用通過對數據源的原始積累、仔細分析,再利用數據發掘技術,最終達到為企業為用戶服務的目的,而這些服務主要有以下幾種。

  1.改進站點設計,提高客戶訪問的興趣對客戶來說,傳統客戶與銷售商之間的空間距離在電子商務中已經不存在了,在Internet上,每一個銷售商對于客戶來說都是一樣的,那么如何使客戶在自己的銷售站點上駐留更長的時間,對銷售商來說將是一個挑戰。為了使客戶在自己的網站上駐留更長的時間,就應該對客戶的訪問信息進行挖掘,通過挖掘就能知道客戶的瀏覽行為,從而了解客戶的興趣及需求所在,并根據需求動態地調整頁面,向客戶展示一個特殊的頁面,提供特有的一些商品信息和廣告,以使客戶能繼續保持對訪問站點的興趣。

  2.發現潛在客戶

  在對web的客戶訪問信息的挖掘中,利用分類技術可以在Internet上找到未來的潛在客戶。獲得這些潛在的客戶通常的市場策略是:先對已經存在的訪問者進行分類。對于一個新的訪問者,通過在Web上的分類發現,識別出這個客戶與已經分類的老客戶的一些公共的描述,從而對這個新客戶進行正確的歸類。然后從它所屬類判斷這個新客戶是否為潛在的購買者,決定是否要把這個新客戶作為潛在的客戶來對待。

  客戶的類型確定后,就可以對客戶動態地展示Web頁面,頁面的內容取決于客戶與銷售商提供的產品和服務之間的關聯。

  對于一個新的客戶,如果花了一段時間瀏覽市場站點,就可以把此客戶作為潛在的客戶并向這個客戶展示一些特殊的頁面內容。

  3.個性化服務

  根據網站用戶的訪問情況,為用戶提供個性化信息服務,這是許多互聯網應用,尤其是互聯網信息服務或電子商務(網站)所追求的目標。根據用戶的訪問行為和檔案向使用者進行動態的推薦,對許多應用都有很大的吸引力。Web日志挖掘是一個能夠出色地完成這個目標的方式。通過Web數據挖掘,可以理解訪問者的動態行為,據此優化電子商務網站的經營模式。通過把所掌握的大量客戶分成不同的類,對不同類的客戶提供個性化服務來提高客戶的滿意度,從而保住老客戶;通過對具有相似瀏覽行為的客戶進行分組,提取組中客戶的共同特征,從而實現客戶的聚類,這可以幫助電子商務企業更好地了解客戶的興趣、消費習慣和消費傾向,預測他們的需求,有針對性地向他們推薦特定的商品并實現交叉銷售,可以提高交易成功率和交易量,提高營銷效果。

  例如全球最大中文購物網站淘寶網。當你購買一件商品后,淘寶網會自動提示你“購買過此商品的人也購買過……”類似的信息,這就是個性化服務的代表。

  4.交易評價

  現在幾乎每一個電子商務網站都增加了交易評價功能,交易評價功能主要就是為了降低交易中的信息不對稱問題。

  電子商務交易平臺設計了在線信譽評價系統,對買賣雙方的交易歷史及其評價進行記錄。在聲譽效應的影響下,賣家也更加重視買家的交易滿意度,并且也形成了為獲取好評減少差評而提高服務質量的良好風氣。交易中的不滿意(或者成為糾紛)是產生非好評(包括中評和差評)的直接原因。那么,交易中一般會產生哪些交易糾紛,這些交易糾紛的存在會如何影響交易評價結果,這些問題的解決對賣家的經營具有重要的指導價值。

  總結

  數據挖掘是當今世界研究的熱門領域,其研究具有廣闊的應用前景和巨大的現實意義。借助數據挖掘可以改進企業的電子商務平臺,增加企業的經營業績,拓寬企業的經營思路,最終提高企業的競爭力。

  參考文獻:

  [1].趙東東.電子商務中的web數據挖掘系統設計[J].微計算機信息20xx,23(10-3):168[2].劉曄.Web數據挖掘在電子商務中的應用[J].中國市場20xx,39(9):178

數據挖掘論文6

  網絡的發展帶動了電子商務市場的繁華,大量的商品、信息在現有的網絡平臺上患上以交易,大大簡化了傳統的交易方式,節儉了時間,提高了效力,但電子市場繁華違后暗藏的問題,同樣成為人們關注的焦點,凸起表現在海量信息的有效應用上,如何更為有效的管理應用潛伏信息,使他們的最大功效患上以施展,成為人們現在鉆研的重點,數據發掘技術的發生,在必定程度上解決了這個問題,但它也存在著問題,需要不斷改善。

  數據發掘(Data Mining)就是從大量的、不完整的、有噪聲的、隱約的、隨機的原始數據中,提取隱含在其中的、人們事前不知道的、但又是潛伏有用的信息以及知識的進程。或者者說是從數據庫中發現有用的知識(KDD),并進行數據分析、數據融會(Data Fusion)和決策支撐的進程。數據發掘是1門廣義的交叉學科,它匯聚了不同領域的鉆研者,特別是數據庫、人工智能、數理統計、可視化、并行計算等方面的學者以及工程技術人員。

  數據發掘技術在電子商務的利用

  一 找到潛伏客戶

  在對于 Web 的客戶走訪信息的發掘中, 應用分類技術可以在Internet 上找到未來的潛伏客戶。使用者可以先對于已經經存在的走訪者依據其行動進行分類,并依此分析老客戶的1些公共屬性, 抉擇他們分類的癥結屬性及互相間瓜葛。對于于1個新的走訪者, 通過在Web 上的分類發現, 辨認出這個客戶與已經經分類的老客戶的1些公共的描寫, 從而對于這個新客戶進行正確的分類。然后從它的分類判斷這個新客戶是有益可圖的客戶群仍是無利可圖的客戶群,抉擇是不是要把這個新客戶作為潛伏的客戶來對于待。客戶的類型肯定后, 可以對于客戶動態地展現 Web 頁面, 頁面的內容取決于客戶與銷售商提供的產品以及服務之間的關聯。若為潛伏客戶, 就能夠向這個客戶展現1些特殊的、個性化的頁面內容。

  二 實現客戶駐留

  在電子商務中, 傳統客戶與銷售商之間的空間距離已經經不存在, 在 Internet 上, 每一1個銷售商對于于客戶來講都是1樣的, 那末使客戶在自己的銷售站點上駐留更長的時間, 對于銷售商來講則是1個挑戰。為了使客戶在自己的網站上駐留更長的時間, 就應當全面掌握客戶的閱讀行動, 知道客戶的興致及需求所在, 并依據需求動態地向客戶做頁面舉薦, 調劑 Web 頁面, 提供獨有的1些商品信息以及廣告, 以使客戶滿意, 從而延長客戶在自己的網站上的駐留的時間。

  三 改良站點的設計

  數據發掘技術可提高站點的效力, Web 設計者再也不完整依托專家的定性指點來設計網站, 而是依據走訪者的信息特征來修改以及設計網站結構以及外觀。站點上頁面內容的支配以及連接就如超級市場中物品的貨架左右1樣, 把擁有必定支撐度以及信任度的相干聯的物品擺放在1起有助于銷售。網站盡量做到讓客戶等閑地走訪到想走訪的頁面, 給客戶留下好的印象, 增添下次走訪的機率。

  四 進行市場預測

  通過 Web 數據發掘, 企業可以分析顧客的將來行動, 容易評測市場投資回報率, 患上到可靠的市場反饋信息。不但大大降低公司的運營本錢, 而且便于經營決策的制訂。

  數據發掘在利用中面臨的問題

  一數據發掘分析變量的選擇

  數據發掘的基本問題就在于數據的數量以及維數,數據結構顯的無比繁雜,數據分析變量即是在數據發掘中技術利用中發生的,選擇適合的分析變量,將提高數據發掘的效力,尤其合用于電子商務中大量商品和用戶信息的處理。

  針對于這1問題,咱們完整可以用分類的法子,分析出不同信息的屬性和呈現頻率進而抽象出變量,運用到所選模型中,進行分析。

  二數據抽取的法子的選擇

  數據抽取的目的是對于數據進行濃縮,給出它的緊湊描寫,如乞降值、平均值、方差值、等統計值、或者者用直方圖、餅狀圖等圖形方式表示,更主要的是他從數據泛化的角度來討論數據總結。數據泛化是1種把最原始、最基本的信息數據從低層次抽象到高層次上的進程。可采取多維數據分析法子以及面向屬性的歸納法子。

  在電子商務流動中,采取維數據分析法子進行數據抽取,他針對于的是電子商務流動中的客戶數據倉庫。在數據分析中時常要用到諸如乞降、共計、平均、最大、最小等匯集操作,這種操作的計算量尤其大,可把匯集操作結果預先計算并存儲起來,以便用于決策支撐系統使用

  三數據趨勢的.預測

  數據是海量的,那末數據中就會隱含必定的變化趨勢,在電子商務中對于數據趨勢的預測尤為首要,尤其是對于客戶信息和商品信息公道的預測,有益于企業有效的決策,取得更多地利潤。但如何對于這1趨勢做出公道的預測,現在尚無統1標準可尋,而且在進行數據發掘進程中大量數據構成文本后格式的非標準化,也給數據的有效發掘帶來了難題。

  針對于這1問題的發生,咱們在電子商務中可以利用聚類分析的法子,把擁有類似閱讀模式的用戶集中起來,對于其進行詳細的分析,從而提供更合適、更令用戶滿意的服務。聚類分析法子的優勢在于便于用戶在查看日志時對于商品及客戶信息有全面及清晰的把握,便于開發以及執行未來的市場戰略,包含自動給1個特定的顧客聚類發送銷售郵件,為1個顧客聚類動態地扭轉1個特殊的站點等,這不管對于客戶以及銷售商來講都是成心義。

  四數據模型的可靠性

  數據模型包含概念數據模型、邏輯數據模型、物理模型。數據發掘的模型目前也有多種,包含采集模型、處理模型及其他模型,但不管哪一種模型都不是很成熟存在缺點,對于數據模型不同采取不同的方式利用。可能發生不同的結果,乃至差異很大,因而這就觸及到數據可靠性的問題。數據的可靠性對于于電子商務來講尤為首要作用。

  針對于這1問題,咱們要保障數據在發掘進程中的可靠性,保證它的準確性與實時性,進而使其在最后的結果中的準確度到達最高,同時在利用模型進程中要盡可能全面的分析問題,防止片面,而且分析結果要由多人進行評價,從而最大限度的保證數據的可靠性。

  五數據發掘觸及到數據的私有性以及安全性

  大量的數據存在著私有性與安全性的問題,尤其是電子商務中的各種信息,這就給數據發掘造成為了必定的阻礙,如何解決這1問題成了技術在利用中的癥結。

  為此相干人員在進行數據發掘進程中必定要遵照職業道德,保障信息的秘要性。

  六數據發掘結果的不肯定性

  數據發掘結果擁有不肯定性的特征,由于發掘的目的不同所以最后發掘的結果自然也會千差萬別,以因而這就需要咱們與所要發掘的目的相結合,做出公道判斷,患上出企業所需要的信息,便于企業的決策選擇。進而到達提高企業經濟效益,取得更多利潤的目的。

  數據發掘可以發現1些潛伏的用戶,對于于電子商務來講是1個不可或者缺的技術支撐,數據發掘的勝利請求使用者對于指望解決問題的領域有深入的了解,數據發掘技術在必定程度上解決了電子商務信息不能有效應用的問題,但它在運用進程中呈現的問題也亟待人們去解決。相信數據發掘技術的改良將推動電子商務的深刻發展。

  參考文獻:

  [一]胡迎松,寧海霞。 1種新型的Web發掘數據采集模型[J]。計算機工程與科學,二00七

  [二] 章寒雁,楊瑞珍。數據發掘技術在電子商務中的鉆研與利用[J]。計算機與網絡,二00七

  [三]董德民。 面向電子商務的Web使用發掘及其利用鉆研[J]。中國管理信息化,二00六

  [四] 尹中強。電子商務中的 Web 數據發掘技術利用[J]。計算機與信息技術,二00七

數據挖掘論文7

  摘要:隨著科學技術的不斷發展,計算機的使用也愈來愈廣泛,他已經發展到各個行業,現如今保險行業也就相應的業務引進了計算機業務系統,而在20xx年8月,我國也出臺了《國務院關于加快發展現代保險服務業的若干意見》這一舉措的有效實施,從政策上為保險行業的快速發展提供相應了保障。而如何在這些被積累下來的寶貴數據中,分析挖掘出新的商機及財富,就成為了我國當前保險行業發展的重要突破口。本篇文章就從數據挖掘技術的應用方面、概念、必要性,以及方法手段進行了深入探討與分析其對財產保險應用的意義。

  關鍵詞:數據挖掘技術;財產保險;應用;分析

  在最近幾年中,我國對于保險行業給予了高度的關注與重視并出臺了許多與之相對應的相關政策,這些政策的發行對于我國的保險行業帶來的極大程度的發展空間。而我國的保險行業也開始了轉型,正在從粗放型經營向集約化經營管理進行過度,最明顯的改變就是之前只注重新客戶的開發而忘記顧忌老客戶的需求與發展,但是現在是同時注重新老客戶的需求與發展,從根本上實現“兩手抓”的政策,所以這種新的形式背景下,計算機中保險行業所留的數據就成為極為重要的挖掘資源。

  一、解析數據挖掘技術在財產保險分析中的應用

  (一)提升財險客戶服務能力

  對于任何一個公司來說沒有客戶所有的產品經營都是紙上談兵,這對于服務行業的財產保險公司更是如此,所以對此所以財產保險行業就面臨著轉型升級的事情財產行業的轉型就意味著面臨著面向客戶的服務質量的提升。在現如今的經濟情況下,保險消費者對于保險行業知識的了解日益增加,保險意識也是越發的加強。客戶對于保險行業也出現了個性化與差異化的需求。從這里就要求保險公司通過數據挖掘技術對客戶的需求進行更深一層的分析與探索,通過探究與分析的結果明確而客戶的需要,并為有更高需求的客戶提供更適合他的保險產品,從而提高業務服務水平,吸引更多的優質客源,來增強市場的競爭力。例如,在對客戶進行細分的時候,可以通過數據挖掘技術中的“二八定律”,對客戶進行細分。通過細分得出結果,參照數據根據每個客戶群體的風險偏好、特點以及需求為他們量身定制適合他們自身的新產品,并制定對應適合的費照新差旅費管理辦法正確規范填寫市內交通補助、伙食補助、城市間交通費、和住宿費金額。并填寫上合計金額,不得出現多報的行為,從而提高差旅費報銷工作的質量。

  (二)風險管理和合規經營

  每個保險公司的生命底線就是合規經營以及對風險的管理,所以每個保險公司必須在運營生產中嚴格的遵守國家的法律法規,不許做出違反法律底線的事情,而風險管理對于保險公司來說具有兩層含義,其實并不簡單,一方面是需要對于企業自身的風險進行管理;另一方面是對于客戶所帶來的風險進行管理。對于保險公司來說這兩方面的風險是相互作用、相輔相成的,第一個方面的風險管理出現問題后者的風險管理就會成為空談,反之第二方面的風險管理沒有得到很好的管理,極大可能會引起前者管理出現問題。而恰恰數據挖掘技術的應用,就可以為財產保險企業規避風險起到很大的幫助。保險公司可以以計算機為使用的工具,通過數據挖掘的技術,可以對數據內大量的信息進行查找并比對分析,高效的識別出在計算機內不符合正常業務邏輯的數據,這樣管理者就可以及時就這些風險數據和業務漏洞進行監測與管控,以減少違法亂紀的事情發生,逐步消除或減少隱藏的風險。保障保險業健康有序的發展,為市場經濟持續健康的進一步發展保駕護航。

  (三)開發新產品

  新的保險產品的開發對于增強保險公司的公司收益、內容、滿足消費者的需求以及競爭力等方面起著重要的作用,這也是經營保險公司的首要內容。新產品的開發是指保險公司針對當前市場的需求、想要達到的效果與自身情況相結合的產物,而在原有的產品上加以重新的組合與設計的創造與改良,來滿足市場的需求,進而提高公司自身的競爭力的過程與行為。后者自不必說,基于我國財產保險公司數據庫信息方面已經積累了很多,而后通過對信息的數據進行發掘,使實現新產品的開發成為可能。譬如,通過數據挖掘技術,我們可以使用現有產品進行進一步的完善、修正或者拆分、組合的,使其變成一全新的保險產品,他會更接近客戶的需求,滿足客戶的真實所需,同時也能夠增加市場的銷量,增強市場競爭力。就以原有的普通財產保險為例子,在保險有效期內未出現任何對客戶的產才造成損失的情況下,客戶所繳納的保險費用是不予以退還的,在財產保險的有效期過后,客戶所繳納的保險費是由保險公司所擁有的。這樣的保險產品是不被大多數客戶所看好與接受的,即使有客戶在第一次購買了此保險,但之后是不會在對本產品進行第二次的投資的。而現在通過數據挖掘的技術,保險公司可以根據對客戶信息的了解進行分析,保險公司推出了一款新的家庭財產兩全保險保險,這是一種全新的保險類別。全新的家庭財產保險,他所需要交納的是保險儲備金,比如每份保險金額為50000元的家庭財產兩全保險,則保險儲金為5000元,投保人必須根據保險金額一次性交納保險儲備金,保險人可以將保險儲備金的利息作為保險費。在保險期滿后,無論是不是在保險期內發生賠付的情況,保險公司都會將保險人的全部的保險儲金如數退還。自從出現了這種投保方式,客戶的接受度得到了大大的提高,全新的家庭財產保險,一方面使保險人保險中得到了應得的利益,另一方面投保人的財產也得到了保險,從而在市場的銷售份額上面也得到了迅速提升。

  二、保險業數據挖掘技術及應用的必要性

  (一)保險業數據挖掘技術的含義

  什么是保險行業的數據挖掘技術,就是從客戶管理的角度出發,針對保險行業數據庫系統內大量的保險單,對客戶的信用數據進行屬性變量提取,進而采用自動化或半自動化等多種挖掘技巧和方法來對客戶的數據進行分析,找到潛在的有價值的信息.

  (二)數據挖掘的過程及方法

  數據挖掘是一個跨越多種學科的交叉技術,主要的用途是利用各種數據為商業上存在的問題提供切實可行的方法與數據。數據挖掘的過程有以下幾個步驟:業務理解→數據準備→數據理解→構建模型→測試設計→做出評價→實施應用。在數據挖掘方面有三個常用的方法:DM、SEMMA以及CRISP等分析方法。同時我們需要根據實際情況來運用數據挖掘技術,選擇最適當的方法,要想將數據挖掘技術達到最佳的效果必須針對具體的流程做出相應的調節。

  (三)保險行業應用數據挖掘技術的必要性

  在保險行業的運營中,常常會出現一下的幾個問題:例如,細分客戶的問題:對于不同的社會收入階層、不同年齡段、不同的行業的客戶,該怎么樣去確定其的保險金額呢?客戶的成長問題:如何把握時機對客戶進行交叉銷售;險種關聯分析問題:在對購買某種保險的客戶進行分析與探查,觀察其是否在同一時間購買另一種保險產品,客戶的獲取問題:如何在付出最小的成本獲得最有價值的客戶的挽留及索賠優化的問題:如何對索賠受理的過程進行優化,挽留住有價值的投保人。保險公司在完成數據的匯總后,所獲取的業務及大量客戶信息,不過是對公司當前所處的市場環境、企業經營情況及客戶基本資料的記錄及反映。而進行數據集中的信息系統,也只能是對數據庫中的這部分數據進行簡單的操作處理,并不能從中發現并提取這些數據中蘊含的具有深層次價值的信息。所以,如若想在決策層面給出解決答案,是不可能實現的。而如果采用數據挖掘技術來對數據庫中所存在的大量的數據進行高水平而深層次的分析,就能夠為實現保險公司的決策及科學經營提供切實可行的依據,因此此技術的出現從而得到了許多保險公司的應用與重視。

  三、結論

  我國經濟的發展正在向新常態的方向進行轉變,而我國財產保險市場的競爭也日益激烈。為了面對這些挑戰,各個保險公司都復出了努力在積極的面向轉型,由傳統的粗放式經營向集約化經營的方式進行過度,面向客戶的營銷模式也是在這之中產生出來的。在這種轉型過度的過程中,財產保險公司對于數據挖掘技術進行充分的利用,使公司的風險管理能力、產品創新能力經營能力、盈利能力、客戶服務能力、和業務發展潛力都得到了全面的大幅度提升。在對我國經濟建設的繁榮以及促進財產保險公司自身的長遠發展,都做出了不可磨滅的貢獻,也是對國家的號召積極的響應,進而對市場經濟持續發展也做出了不少的貢獻。

  參考文獻:

  [1]高文文.數據挖掘技術在財產保險分析中的應用[D].河北科技大學,20xx.

  [2]楊杉,何躍.數據倉庫和數據挖掘技術在保險公司中的應用[J].計算機技術與發展,20xx.

  [3]葛春燕.數據挖掘技術在保險公司客戶評估中的應用研究[J].軟件,20xx.

  [4]陳慶文.數據挖掘在財產保險公司應用研究——以人保財險公司為例[D].對外經濟貿易大學,20xx.

數據挖掘論文8

  摘要:數據挖掘是一種特殊的數據分析過程,其不僅在功能上具有多樣性,同時還具有著自動化、智能化處理以及抽象化分析判斷的特點,對于計算機犯罪案件中的信息取證有著非常大的幫助。本文結合數據挖掘技術的概念與功能,對其在計算機犯罪取證中的應用進行了分析。

  關鍵詞:數據挖掘技術;計算機;犯罪取證

  隨著信息技術與互聯網的不斷普及,計算機犯罪案件變得越來越多,同時由于計算機犯罪的隱蔽性、復雜性特點,案件偵破工作也具有著相當的難度,而數據挖掘技術不僅能夠對計算機犯罪案件中的原始數據進行分析并提取出有效信息,同時還能夠實現與其他案件的對比,而這些對于計算機犯罪案件的偵破都是十分有利的。

  1數據挖掘技術的功能與應用分析

  1.1數據挖掘技術的概念

  數據挖掘技術是針對當前信息時代下海量的網絡數據信息而言的,簡單來說,就是從大量的、不完全的、有噪聲的、模糊的隨機數據中對潛在的有效知識進行自動提取,從而為判斷決策提供有利的信息支持。同時,從數據挖掘所能夠的得到的知識來看,主要可以分為廣義型知識、分類型知識、關聯性知識、預測性知識以及離型知識幾種。

  1.2數據挖掘技術的功能

  根據數據挖掘技術所能夠提取的不同類型知識,數據挖掘技術也可以在此基礎上進行功能分類,如關聯分析、聚類分析、孤立點分析、時間序列分析以及分類預測等都是數據挖掘技術的重要功能之一,而其中又以關聯分析與分類預測最為主要。大量的數據中存在著多個項集,各個項集之間的取值往往存在著一定的規律性,而關聯分析則正是利用這一點,對各項集之間的關聯關系進行挖掘,找到數據間隱藏的關聯網,主要算法有FP-Growth算法、Apriori算法等。在計算機犯罪取證中,可以先對犯罪案件中的特征與行為進行深度的挖掘,從而明確其中所存在的聯系,同時,在獲得審計數據后,就可以對其中的審計信息進行整理并中存入到數據庫中進行再次分析,從而達到案件樹立的效果,這樣,就能夠清晰的判斷出案件中的行為是否具有犯罪特征[1]。而分類分析則是對現有數據進行分類整理,以明確所獲得數據中的相關性的一種數據挖掘功能。在分類分析的過程中,已知數據會被分為不同的數據組,并按照具體的數據屬性進行明確分類,之后再通過對分組中數據屬性的具體分析,最終就可以得到數據屬性模型。在計算機犯罪案件中,可以將按照這種數據分類、分析的方法得到案件的數據屬性模型,之后將這一數據屬性模型與其他案件的數據屬性模型進行對比,這樣就能夠判斷嫌疑人是否在作案動機、發生規律以及具體特征等方面與其他案件模型相符,也就是說,一旦這一案件的數據模型屬性與其他案件的數據模型屬性大多相符,那么這些數據就可以被確定為犯罪證據。此外,在不同案件間的共性與差異的基礎上,分類分析還可以實現對于未知數據信息或類似數據信息的有效預測,這對于計算機犯罪案件的處理也是很有幫助的。此外,數據挖掘分類預測功能的實現主要依賴決策樹、支持向量機、VSM、Logisitic回歸、樸素貝葉斯等幾種,這些算法各有優劣,在實際應用中需要根據案件的實際情況進行選擇,例如支持向量機具有很高的分類正確率,因此適合用于特征為線性不可分的案件,而決策樹更容易理解與解釋。

  2數據挖掘技術在計算機犯罪取證中的具體應用思路

  對于數據挖掘技術,目前的計算機犯罪取證工作并未形成一個明確而統一的應用步驟,因此,我們可以根據數據挖掘技術的特征與具體功能,對數據挖掘技術在計算機犯罪取證中的應用提供一個較為可行的具體思路[2]。首先,當案件發生后,一般能夠獲取到海量的原始數據,面對這些數據,可以利用FP-Growth算法、Apriori算法等算法進行關聯分析,找到案件相關的潛在有用信息,如犯罪嫌疑人的犯罪動機、案發時間、作案嫌疑人的基本信息等等。在獲取這些基本信息后,雖然能夠對案件的基本特征有一定的了解,但犯罪嫌疑人卻難以通過這些簡單的信息進行確定,因此還需利用決策樹、支持向量機等算法進行分類預測分析,通過對原始信息的準確分類,可以得到案件的犯罪行為模式(數據屬性模型),而通過與其他案件犯罪行為模式的對比,就能夠對犯罪嫌疑人的具體特征進行進一步的預測,如經常活動的場所、行為習慣、分布區域等,從而縮小犯罪嫌疑人的鎖定范圍,為案件偵破工作帶來巨大幫助。此外,在計算機犯罪案件處理完畢后,所建立的嫌疑人犯罪行為模式以及通過關聯分析、分類預測分析得到的案件信息仍具有著很高的利用價值,因此不僅需要將這些信息存入到專門的數據庫中,同時還要根據案件的結果對數據進行再次分析與修正,并做好犯罪行為模式的分類與標記工作,為之后的案件偵破工作提供更加豐富、詳細的數據參考。

  3結束語

  總而言之,數據挖掘技術自計算機犯罪取證中的應用是借助以各種算法為基礎的關聯、分類預測功能來實現的,而隨著技術的不斷提升以及數據庫中的犯罪行為模式會不斷得到完善,在未來數據挖掘技術所能夠起到的作用也必將越來越大。

  參考文獻

  [1]李艷花.數據挖掘在計算機動態取證技術中的應用[J].信息與電腦(理論版),20xx(02):174-176.

  作者:周永杰 單位:河南警察學院信息安全系

數據挖掘論文9

  題目:大數據挖掘在智游應用中的探究

  摘要:大數據和智游都是當下的熱點, 沒有大數據的智游無從談“智慧”, 數據挖掘是大數據應用于智游的核心, 文章探究了在智游應用中, 目前大數據挖掘存在的幾個問題。

  關鍵詞:大數據; 智游; 數據挖掘;

  1引言

  隨著人民生活水平的進一步提高, 旅游消費的需求進一步上升, 在云計算、互聯網、物聯網以及移動智能終端等信息通訊技術的飛速發展下, 智游應運而生。大數據作為當下的熱點已經成了智游發展的有力支撐, 沒有大數據提供的有利信息, 智游無法變得“智慧”。

  2大數據與智游

  旅游業是信息密、綜合性強、信息依存度高的產業[1], 這讓其與大數據自然產生了交匯。2010年, 江蘇省鎮江市首先提出“智游”的概念, 雖然至今國內外對于智游還沒有一個統一的學術定義, 但在與大數據相關的描述中, 有學者從大數據挖掘在智游中的作用出發, 把智游描述為:通過充分收集和管理所有類型和來源的旅游數據, 并深入挖掘這些數據的潛在重要價值信息, 然后利用這些信息為相關部門或對象提供服務[2]。這一定義充分肯定了在發展智游中, 大數據挖掘所起的至關重要的作用, 指出了在智游的過程中, 數據的收集、儲存、管理都是為數據挖掘服務, 智游最終所需要的是利用挖掘所得的有用信息。

  3大數據挖掘在智游中存在的問題

  2011年, 我國提出用十年時間基本實現智游的目標[3], 過去幾年, 國家旅游局的相關動作均為了實現這一目標。但是, 在借助大數據推動智游的可持續性發展中, 大數據所產生的價值卻亟待提高, 原因之一就是在收集、儲存了大量數據后, 對它們深入挖掘不夠, 沒有發掘出數據更多的價值。

  3.1 信息化建設

  智游的發展離不開移動網絡、物聯網、云平臺。隨著大數據的不斷發展, 國內許多景區已經實現Wi-Fi覆蓋, 部分景區也已實現人與人、人與物、人與景點之間的實時互動, 多省市已建有旅游產業監測平臺或旅游大數據中心以及數據可視化平臺, 從中進行數據統計、行為分析、監控預警、服務質量監督等。通過這些平臺, 已基本能掌握跟游客和景點相關的數據, 可以實現更好旅游監控、產業宏觀監控, 對該地的旅游管理和推廣都能發揮重要作用。

  但從智慧化的發展來看, 我國的信息化建設還需加強。雖然通訊網絡已基本能保證, 但是大部分景區還無法實現對景區全面、透徹、及時的感知, 更為困難的是對平臺的建設。在數據共享平臺的建設上, 除了必備的硬件設施, 大數據實驗平臺還涉及大量部門, 如政府管理部門、氣象部門、交通、電子商務、旅行社、旅游網站等。如此多的部門相關聯, 要想建立一個完整全面的大數據實驗平臺, 難度可想而知。

  3.2 大數據挖掘方法

  大數據時代缺的不是數據, 而是方法。大數據在旅游行業的應用前景非常廣闊, 但是面對大量的數據, 不懂如何收集有用的數據、不懂如何對數據進行挖掘和利用, 那么“大數據”猶如礦山之中的廢石。旅游行業所涉及的結構化與非結構化數據, 通過云計算技術, 對數據的收集、存儲都較為容易, 但對數據的挖掘分析則還在不斷探索中。大數據的挖掘常用的方法有關聯分析, 相似度分析, 距離分析, 聚類分析等等, 這些方法從不同的角度對數據進行挖掘。其中, 相關性分析方法通過關聯多個數據來源, 挖掘數據價值。但針對旅游數據, 采用這些方法挖掘數據的價值信息, 難度也很大, 因為旅游數據中冗余數據很多, 數據存在形式很復雜。在旅游非結構化數據中, 一張圖片、一個天氣變化、一次輿情評價等都將會對游客的旅行計劃帶來影響。對這些數據完全挖掘分析, 對游客“行前、行中、行后”大數據的實時性挖掘都是很大的挑戰。

  3.3 數據安全

  2017年, 數據安全事件屢見不鮮, 伴著大數據而來的數據安全問題日益凸顯出來。在大數據時代, 無處不在的數據收集技術使我們的個人信息在所關聯的數據中心留下痕跡, 如何保證這些信息被合法合理使用, 讓數據“可用不可見”[4], 這是亟待解決的問題。同時, 在大數據資源的開放性和共享性下, 個人隱私和公民權益受到嚴重威脅。這一矛盾的存在使數據共享程度與數據挖掘程度成反比。此外, 經過大數據技術的分析、挖掘, 個人隱私更易被發現和暴露, 從而可能引發一系列社會問題。

  大數據背景下的旅游數據當然也避免不了數據的安全問題。如果游客“吃、住、行、游、娛、購”的數據被放入數據庫, 被完全共享、挖掘、分析, 那游客的人身財產安全將會受到嚴重影響, 最終降低旅游體驗。所以, 數據的安全管理是進行大數據挖掘的前提。

  3.4 大數據人才

  大數據背景下的智游離不開人才的創新活動及技術支持, 然而與專業相銜接的大數據人才培養未能及時跟上行業需求, 加之創新型人才的外流, 以及數據統計未來3~5年大數據行業將面臨全球性的人才荒, 國內智游的構建還缺乏大量人才。

  4解決思路

  在信息化建設上, 加大政府投入, 加強基礎設施建設, 整合結構化數據, 抓取非結構化數據, 打通各數據壁壘, 建設旅游大數據實驗平臺;在挖掘方法上, 對旅游大數據實時性數據的挖掘應該被放在重要位置;在數據安全上, 從加強大數據安全立法、監管執法及強化技術手段建設等幾個方面著手, 提升大數據環境下數據安全保護水平。加強人才的培養與引進, 加強產學研合作, 培養智游大數據人才。

  參考文獻

  [1]翁凱.大數據在智游中的應用研究[J].信息技術, 2015, 24:86-87.

  [2]梁昌勇, 馬銀超, 路彩虹.大數據挖掘, 智游的核心[J].開發研究, 2015, 5 (180) :134-139.

  [3]張建濤, 王洋, 劉力剛.大數據背景下智游應用模型體系構建[J].企業經濟, 2017, 5 (441) :116-123.

  [4]王竹欣, 陳湉.保障大數據, 從哪里入手?[N].人民郵電究, 2017-11-30.

數據挖掘論文10

  摘 要:數據挖掘技術在各行業都有廣泛運用,是一種新興信息技術。而在線考試系統中存在著很多的數據信息,數據挖掘技在在線考試系統有著重要的意義,和良好的應用前景,從而在眾多技術中脫穎而出。本文從對數據挖掘技術的初步了解,簡述數據挖掘技術在在線考試系統中成績分析,以及配合成績分析,完善教學。

  關鍵詞:數據挖掘技術;在線考試;成績分析 ;完善教學

  隨著計算機網絡技術的快速發展,計算機輔助教育的不斷普及,在線考試是一種利用網絡技術的重要輔助教育手段,其改革有著重要的意義。數據挖掘技術作為一種新興的信息技術,其包括了人工智能、數據庫、統計學等學科的內容,是一門綜合性的技術。這種技術的主要特點是對數據庫中大量的數據進行抽取、轉換和分析,從中提取出能夠對教師有作用的關鍵性數據。將其運用于在線考試系統中,能夠很好的處理在線考試中涉及到的數據,讓在線考試的實用性和高效性得到進一步的增強,幫助教師更加快速、完整的統計考試信息,完善教學。

  1.初步了解數據挖掘技術

  數據挖掘技術是從大量數據中"挖掘"出對使用者有用的知識,即從大量的、隨機的、有噪聲的、模糊的、不完全的實際應用數據中,"挖掘"出隱含在其中但人們事先卻不知道的,而又是對人們潛在有用的信息與知識的整個過程。

  目前主要的商業數據挖掘系統有SAS公司的Enterprise Miner,SPSS公司的Clementine,Sybas公司的Warehouse Studio,MinerSGI公司的Mineset,RuleQuest Research公司的See5,IBM公司的Intelligent,還有 CoverStory, Knowledge Discovery,Quest,EXPLORA, DBMiner,Workbench等。

  2.數據挖掘在在線考試中的主要任務

  2.1數據分類

  數據挖掘技術通過對數據庫中的數據進行分析,把數據按照相似性歸納成若干類別,然后做出分類,并能夠為每一個類別都做出一個準確的描述,挖掘出分類的規則或建立一個分類模型。

  2.2數據關聯分析

  數據庫中的數據關聯是一項非常重要,并可以發現的知識。數據關聯就是兩組或兩組以上的數據之間有著某種規律性的聯系。數據關聯分析的作用就是找出數據庫中隱藏的聯系,從中得到一些對學校教學工作管理者有用的信息。就像是在購物中,就可以通過顧客的購買物品的聯系,從中得到顧客的購買習慣。

  2.3預測

  預測是根據已經得到的數據,從而對未來的情況做出一個可能性的分析。數據挖掘技術能自動在大型的數據庫中做出一個較為準確的分析。就像是在市場投資中,可以通過各種商品促銷的數據來做出一個未來商品的促銷走勢。從而在投資中得到最大的回報。

  3.數據挖掘的方法

  數據挖掘技術融合了多個學科、多個領域的知識與技術,因此數據挖掘的方法也呈現出很多種類的形式。就目前的統計分析類的數據挖掘技術的角度來講,光統計分析技術中所用到的數據挖掘模型就回歸分析、邏輯回歸分析、有線性分析、非線性分析、單變量分析、多變量分析、最近鄰算法、最近序列分析、聚類分析和時間序列分析等多種方法。數據挖掘技術利用這些方法對那些異常形式的數據進行檢查,然后通過各種數據模型和統計模型對這些數據來進行解釋,并從這些數據中找出隱藏在其中的商業機會和市場規律。另外還有知識發現類數據挖掘技術,這種和統計分析類的數據挖掘技術完全不同,其中包括了支持向量機、人工神經元網絡、遺傳算法、決策樹、粗糙集、關聯順序和規則發現等多種方法。

  4.數據挖掘在考試成績分析中的幾點應用

  4.1運用關聯規則分析教師的年齡對學生考試成績的影響

  數據挖掘技術中的關聯分析在教學分析中,是一種使用頻繁,行之有效的方法,它能挖掘出大量數據中項集之間之間有意義的關聯聯系,幫助知道教師的教學過程。例如在如今的一些高職院校中,就往往會把學生的英語四六級過級率,計算機等級等,以這些為依據來評價教師的教學效果。將數據挖掘技術中的關聯規則運用于考試的成績分析當中,就能夠挖掘出一些對學生過級率產生影響的因素,對教師的教學過程進行重要的指導,讓教師的教學效率更高,作用更強。

  還可以通過關聯規則算法,先設定一個最小可信度和支持度,得到初步的關聯規則,根據相關規則,分析出教師的組成結構和過級率的影響,從來進行教師隊伍的結構調整,讓教師隊伍更加合理。

  4.2采用分類算法探討對考試成績有影響的因素

  數據挖掘技術中的分類算法就是對一組對象或一個事件進行歸類,然后通過這些數據,可以進行分類模型的建立和未來的預測。分類算法可以進行考試中得到的數據進行分類,然后通過學生的一些基本情況進行探討一些對考試成績有影響的因素。分類算法可以用一下步驟實施:

  4.2.1數據采集

  這種方法首先要進行數據采集,需要這幾方面的數據,學生基本信息(姓名、性別、學號、籍貫、所屬院系、專業、班級等)、學生調查信息(比如學習前的知識掌握情況、學習興趣、課堂學習效果、課后復習時間量等)、成績(學生平常學習成績,平常考試成績,各種大型考試成績等)、學生多次考試中出現的易錯點(本次考試中出現的易錯點,以往考試中出現的易錯點)

  4.2.2數據預處理

  (1)數據集成。把數據采集過程中得到的多種信息,利用數據挖掘技術中的數據庫技術生產相應的學生考試成績分析基本數據庫。(2)數據清理。在學生成績分析數據庫中,肯定會出現一些情況缺失,對于這些空缺處,就需要使用數據清理技術來進行這些數據庫中數據的填補遺漏。例如,可以采用忽略元組的方法來刪除那些沒有參加考試的學生考試數據已經在學生填寫的調查數據中村中的空缺項。(3)數據轉換。數據轉換主要功能是進行進行數據的離散化操作。在這個過程中可以根據實際需要進行分類,比如把考試成績從0~59的分到較差的一類,將60到80分為中等類,81到100分為優秀等。(4)數據消減。數據消減的功能就是把所需挖掘的數據庫,在消減的過程又不能影響到最終的數據挖掘結果。比如在分析學生的基本學習情況的影響因素情況中,學生信息表中中出現的字段很多,可以選擇性的刪除班別、籍貫等引述,形成一份新的學生基本成績分析數據表。

  4.2.3利用數據挖掘技術,得出結論

  通過數據挖掘技術在在線考試中的應用,得出這些學生數據的相關分析,比如說學生考試中的易錯點在什么地方,學生考試成績的自身原因,學生考試成績的環境原因,教師隊伍的搭配情況等等,從中得出如何調整學校教學資源,教師的教學方案調整等等,從而完善學校對學生的教學。

  5.結語

  數據挖掘技術在社會各行各業中都有一定程度的使用,基于其在數據組織、分析能力、知識發現和信息深層次挖掘的能力,在使用中取得了顯著的成效,但數據挖掘技術中還存在著一些問題,例如數據的挖掘算法、預處理、可視化問題、模式識別和解釋等等。對于這些問題,學校教學管理工作者要清醒的認識,在在線考試系統中對數據挖掘信息做出合理的使用,讓數字挖掘技術在在線考試系統中能夠更加有效的發揮其長處,避免其在在線考試系統中的的缺陷。

  參考文獻:

  [1]胡玉榮.基于粗糙集理論的數據挖掘技術在高校學生成績分析中的作用[J].荊門職業技術學院學報,20xx,12(22):12.

  [2][加]韓家煒,堪博(Kam ber M.) .數據挖掘:概念與技術(第2版)[M]范明,譯.北京:機械工業出版社,20xx.

  [3]王潔.《在線考試系統的設計與開發》[J].山西師范大學學報,20xx(2).

  [4] 王長娥.數據挖掘技術在教育中的應用[J].計算機與信息技術,20xx(11)

數據挖掘論文11

  1理論研究

  1.1客戶關系管理

  客戶關系管理的目標是依靠高效優質的服務吸引客戶,同時通過對業務流程的全面優化和管理,控制企業運行成本。客戶關系管理是一種管理理念,將企業客戶視作企業發展最重要的企業資源,采用企業服務優化等手段來管理客戶關系。客戶關系管理并不是單純的信息技術或者管理技術,而是一種企業生物戰略,通過對企業客戶的分段充足,強化客戶滿意的行為,優化企業可盈利性,將客戶處理工作上升到企業級別,不同部門負責與客戶進行交互,但是整個企業都需要向客戶負責,在信息技術的支持下實現企業和客戶連接環節的自動化管理。

  1.2客戶細分

  客戶細分由美國學者溫德爾史密斯在20世紀50年代提出,認為客戶細分是根據客戶屬性將客戶分成集合。現代營銷學中的客戶細分是按照客戶特征和共性將客戶群分為不同等級或者子群體,尋找相同要素,對不同類別客戶心理與需求急性研究和評估,從而指導進行企業服務資源的分配,是企業獲得客戶價值的一種理論與方法。因此我們注意到,客戶細分其實是一個分類問題,但是卻有著顯著的特點。

  1.2.1客戶細分是動態的企業不斷發展變化,用戶數據不斷積累,市場因素的變化,都會造成客戶細分的變化。所以客戶細分工作需要根據客戶情況的變化進行動態調整,

  減少錯誤分類,提高多次細分中至少有一次是正確分類的可能性。

  1.2.2受眾多因素影響

  隨著時間的推移,客戶行為和心理會發生變化,所以不同時間的數據會反映出不同的規律,客戶細分方法需要在變化過程中準確掌握客戶行為的規律性。

  1.2.3客戶細分有不同的分類標準

  一般分類問題強調準確性,客戶關系管理則強調有用性,講求在特定限制條件下實現特定目標。

  1.3數據挖掘

  數據挖掘就是從大型數據庫數據中提取有價值的、隱含的、事前未知的潛在有用信息。數據挖掘技術不斷發展,挖掘對象不再是單一數據庫,已經逐漸發展到文件系統、數據集合以及數據倉庫的挖掘分析。

  2客戶細分的數據挖掘

  2.1邏輯模型

  客戶數據中有著若干離散客戶屬性和連續客戶屬性,每個客戶屬性為一個維度,客戶作為空間點,全部客戶都能夠形成多為空間,作為客戶的屬性空間,假設A={A1,A2,…Am}是一組客戶屬性,屬性可以是連續的,也可以離散型,這些屬性就形成了客戶m維屬性空間。同時設g是一個描述客戶屬性的一個指標,f(g)是符合該指標的客戶集合,即為概率外延,則任一確定時刻都是n個互不相交集合。在客戶價值概念維度上,可分為“有價值客戶”“潛在價值客戶”“無價值客戶”三種類型,定義RB如下:(1)顯然RB是一個等價關系,經RB可分類屬性空間為若干等價類,每個等價類都是一個概念類,建立客戶細分,就是客戶屬性空間和概念空間映射關系的建立過程。

  2.2客戶細分數據挖掘實施

  通過數據庫已知概念類客戶數據進行樣本學習和數據挖掘,進行客戶屬性空間與概念空間映射的自動歸納。首先確定一組概念類已知客戶集合。首先確定一個映射:p:C→L,使,如果,則。,求p(c)確定所屬概念類。數據部分有客戶數據存儲和概念維數據構成,客戶數據存儲有企業全部內在屬性、外在屬性以及行為屬性等數據,方法則主要有關聯規則分析、深井網絡分類、決策樹、實例學習等數據挖掘方法,通過對客戶數據存儲數據學習算法來建立客戶數據和概念維之間的映射關系。

  2.3客戶細分數據分析

  建立客戶動態行為描述模型,滿足客戶行為非確定性和非一致性要求,客戶中心的管理體制下,客戶細分影響企業戰術和戰略級別決策的生成,所以數據挖掘要能夠彌補傳統數據分析方法在可靠性方面的缺陷。

  2.3.1客戶外在屬性

  外在屬性有客戶地理分布、客戶組織歸屬情況和客戶產品擁有情況等。客戶的組織歸屬是客戶社會組織類型,客戶產品擁有情況是客戶是否擁有或者擁有哪些與其他企業或者其他企業相關產品。

  2.3.2內在屬性

  內在屬性有人口因素和心理因素等,人口因素是消費者市場細分的重要變量。相比其他變量,人口因素更加容易測量。心理因素則主要有客戶愛好、性格、信用情況以及價值取向等因素。

  2.3.3消費行為

  消費行為屬性則重點關注客戶購買前對產品的了解情況,是客戶細分中最客觀和重要的因素。

  2.4數據挖掘算法

  2.4.1聚類算法

  按照客戶價值標記聚類結果,通過分類功能,建立客戶特征模型,準確描述高價值客戶的一些特有特征,使得企業在之后的市場活動中能夠迅速發現并抓住類似的高價值客戶,全面提高客戶的整體價值水平。通常都采用中心算法進行客戶的聚類分析,分析涉及的字段主要有客戶的基本信息以及與客戶相關業務信息,企業采用中心算法,按照企業自身的行業性質以及商務環境,選擇不同的聚類分析策略,有主屬性聚類分析和全屬性聚類分析兩類。主屬性聚類分析是企業根據在企業標度變量中選擇主要弧形作為聚類分析變量。通常區間標度變量選用的度量單位會對聚類分析結果產生很大影響,選擇的度量單位越小,就會獲得越大的可能值域,對聚類結果的影響也就越大。

  2.4.2客戶分析預測

  行業競爭愈加激烈,新客戶的獲得成本越來越高,在保持原有工作價值的同時,客戶的流失也受到了企業的重視。為了控制客戶流失,就需要對流失客戶的數據進行認真分析,找尋流失客戶的根本原因,防止客戶的持續流失。數據挖掘聚類功能同樣能夠利用在客戶流失數據分析工作中,建立基于流失客戶數據樣本庫的分類函數以及分類模式,通過模型分析客戶流失因素,能夠獲得一個最有可能流失的客戶群體,同時編制一個有針對性的挽留方案。之后對數據進行分析并利用各種數據挖掘技術和方法在多個可供選擇的模型中找出最佳模型。初始階段,模型的擬合程度可能不理想,但是隨著模型的不斷更換和優化,最終就有可能找出合適的模型進行數據描述并挖掘出流失數據規律。通常模擬模型都通過數據分析專業和業務專家協作完成,采用決策樹、貝葉斯網絡、神經網絡等流失分析模型,實現客戶行為的預測分析。

  3結語

  從工業營銷中的客戶細分觀點出發,在數據挖掘、客戶關系管理等理論基礎上,采用統計學、運籌學和數據挖掘技術,對客戶細分的數據挖掘方法進行了研究,建立了基于決策樹的客戶細分模型,是一種效率很高的管理工具。

  作者:區嘉良 呂淑儀 單位:中國石化廣東石油分公司

數據挖掘論文12

  數據挖掘技術在金融業、醫療保健業、市場業、零售業和制造業等很多領域都得到了很好的應用。針對交通安全領域中交通事故數據利用率低的現狀,可以通過數據挖掘對相關交通事故數據進行統計分析,從而發現其中的關聯,這對提升交通安全水平具有非常重要的意義。

  1數據挖掘技術概述

  數據挖掘(DataMining)即對大量數據進行有效的分類統計,從而整理出有規律的、有價值的、潛在的未知信息。一般來講,這些數據存在極大的隨機性和不完全性,其包括各行各業各個方面的數據。數據挖掘是一個結合了數據庫、人工智能、機器學習的學科,涉及統計數據和技術理論等領域。

  2數據挖掘關聯分析研究

  關聯分析作為數據挖掘中的重要組成部分,其主要作用就是通過數據之間的相互關聯從而發現數據集中某種未知的聯系。關聯分析最初是在20世紀90年代初被提出來的,一直備受關注。已被廣泛應用于各行各業,包括醫療體檢、電子商務、商業金融等各個領域。關聯規則的挖掘一般可分成兩個步驟[1]:

  (1)找出頻繁項集,不小于最小支持度的項集;

  (2)生成強關聯規則,不小于最小置信度的關聯規則。相對于生成強關聯規則,找出頻繁項集這一步比較麻煩。由R.Agrawal等人在1994年提出的Apriori算法是生成頻繁項集的經典算法[2]。Apriori算法使用了Level-wise搜索的迭代方法,即用k-項集探索(k+1)-項集。Apriori算法在整體上可分為兩個部分。

  (1)發現頻集。這個部分是最重要的,開銷相繼產生了各種各樣的頻集算法,專門用于發現頻集,以降低其復雜度、提高發現頻集的效率。

  (2)利用所獲得的頻繁項集各種算法主要致力產生強關聯規則。當然頻集構成的聯規則未必是強關聯規則,還要檢驗構成的關聯規則的支持度和支持度是否超過它們的閾值。Apriori算法找出頻繁項集分為兩步:連接和剪枝。

  (1)連接。集合Lk-1為頻繁k-1項集的集合,它通過與自身連接就可以生成候選k項集的集合,記作Ck。

  (2)剪枝。頻繁k項集的集合Lk是Ck的子集。剪枝首先利用Apriori算法的性質(頻繁項集的所有非空子集都是頻繁的,如果不滿足這個條件,就從候選集合Ck中刪除)對Ck進行壓縮;然后,通過掃描所有的事務,確定壓縮后Ck中的每個候選的支持度;最后與設定的最小支持度進行比較,如果支持度不小于最小支持度,則認為該候選項是頻繁的。目前,在互聯網技術及科學技術的快速發展下,人工智能、機器識別等技術興起,關聯分析也被越來越多應用其中,并在不斷發展中提出了大量的改進算法。

  3數據挖掘關聯分析在道路交通事故原因分析當中的應用

  近年來,我國越來越多的學者將數據挖掘關聯分析應用于道路交通事故的研究中,主要是分析道路、車輛、行人以及環境等因素與交通事故之間的某種聯系。Pande和Abdel-Aty[3]通過關聯分析研究了美國佛羅里達州20xx年非交叉口發生的道路交通事故,重點分析了各個不同的影響因素與交通事故之間的內在聯系,通過研究得出如下結論,道路照明條件不足是引發道路交通事故的主要因素,除此之外,還發現天氣惡劣的環境下道路彎道的直線段也極易發生交通事故。Graves[4]利用數據挖掘技術中的關聯規則對歐洲道路交通事故進行了分析,主要研究了交通事故與道路設施狀況之間的關聯,通過研究發現了易導致交通事故發生的各個道路設施狀況因素,此研究為歐洲路面建設及投資提供了強大的決策支持。我國學者董立巖在研究道路交通事故數據的文獻中,將粗糙集與關聯分析進行了融合,提出了基于偏好信息的決策規則簡約算法并將其應用其中,通過分析發現了道路交通事故的未知規律。王艷玲通過關聯分析中的因子關聯樹模型重點分析了影響道路交通事故最重要的因子,發現在道路交通事故常見的誘因人、車、路及環境中對事故影響最大的因子是環境。許卉瑩等利用關聯分析、聚類分析以及決策樹分析三種數據挖掘技術對道路交通事故數據進行分析,最終得出了科學的道路交通事故預防和交通安全管理決策依據。尚威等在研究中,對大量的道路交通數據進行了有效整合,并在此基礎上按照交通事故相關因素的不同特點整理出與事故發生有關的字段數據,形成新的事故數據記錄表,然后再根據多維關聯規則對記錄的相關數據進行分析,從而發現了事故誘導因素記錄字段值和事故結果字段值組成的道路交通事故頻繁字段的組合。張聽等在充分掌握聚類數據挖掘理論與方法的基礎上,提出了多目標聚類分析框架和一個啟發式的聚類算法k-WANMI,并將其用在道路交通事故的聚類研究中對不同權重的屬性進行了多目標分析。同樣,許宏科也利用該方法對公路隧道交通流數據進行了聚類分析,其在研究中不僅明確了隧道交通流的峰值規律,而且還根據這種規律制訂了隧道監控設備的不同控制方案,對提高隧道交通安全的水平做了極大的貢獻。徐磊和方源敏在研究中,提出了由簡化信息熵構造的改進C4.5決策樹算法,并將其應用在交通事故數據的研究中,對交通數據進行了正確分類,發現了一些隱藏的規則和知識,為交通管理提供了依據。劉軍、艾力斯木吐拉、馬曉松運用多維關聯規則分析交通事故記錄,從而找到導致交通事故發生次數多的主要原因,并且指導相關部門作出相應的決策。楊希剛運用關聯規則為現實中的交通事故的預防提供依據。吉林大學的吳昊等人,基于關聯規則的理論基礎,定義了公路交通事故屬性模型,并結合改進后的Apriori算法,分析了交通事故歷史數據信息,為有關單位和用戶尋找道路黑點(即事故多發點)提供了技術支援和決策幫助。

  4結語

  通過數據挖掘中的關聯分析方法雖然能夠對道路交通事故的相關因素進行清晰的分析,但是目前在這一方面的研究仍有不足之處。因為關聯分析在道路交通事故的研究中往往只能片面發現某一種或幾種因素影響交通事故的規律,很難將所有影響因素結合起來進行全面系統的分析。然而道路交通事故的發生通常都是由相應因素導致,而后事故當事人意識到危險源的存在并采取措施,直到事故發生的連續過程,整體來看體現了時序性。也就是說,道路交通事故是受到一系列按照時間先后順序排列的影響因素組合共同作用而發生的,從整體的角度出發研究事故發生機理更加科學。

  參考文獻

  [1]楊秀萍.大數據下關聯規則算法的改進及應用[J].計算機與現代化,20xx(12):23-26.

  [2]王云,蘇勇.關聯規則挖掘在道路交通事故分析中的應用[J].科學技術與工程,20xx(7):1824-1827.

  [3]徐磊,方源敏.基于決策樹C4.5改進算法的交通數據挖掘[J].微處理機,20xx,31(6):57-59.

  [4]楊希剛.數據挖掘在交通事故中的應用[[J].軟件導刊,20xx,7(26):18-20.

數據挖掘論文13

  【摘要】企業精準營銷服務是在充分了解客戶的基礎上,針對客戶特點及需求,有針對性地進行產品營銷的行為。大數據時代數據呈現井噴式爆炸性增長,不斷驅動企業大數據精準營銷的應用,數據挖掘成了企業從海量數據中獲取信息知識的必要技術手段。本文主要探討數據挖掘常見方法、挖掘過程及在企業精準營銷服務的應用,以實際案例分析總結企業利用數據挖掘開展精準營銷工作更為合理的方法、流程。

  【關鍵詞】數據挖掘;方法論;精準營銷服務;策略

  一、引言

  大數據時代的來臨,數據呈現井噴式爆炸性增長。在海量數據中,隱藏著無數商業機會,但如何將大數據利用起來卻是一項艱巨的工作。在企業實施精準營銷服務過程中,面臨著客戶在哪?客戶有什么特征?客戶需要什么產品?如何進行有效營銷,提升客戶價值?我們在數據的海洋里淹死了,卻在知識的海洋里渴死了……而從龐大的數據中,借助合適的數據挖掘技術及工具,借助結合實際的數據挖掘方法,以客觀統計分析和挖掘算法挖掘出企業精準營銷服務的潛在目標用戶、用戶特征,同時匹配合適的營銷服務策略,可以顯著提升企業營銷服務精準度與成功率。

  二、數據挖掘方法

  數據挖掘工作本質上是一個解決實際業務問題的過程,需要有系統、科學的數據挖掘方法論來指導。業內主流的數據挖掘方法論有:歐盟機構聯合起草的CRISP-DM、SAS公司提出的SEMMA。CRISP-DM將數據挖掘分為6個階段,即商業理解(Busi-nessunderstanding)、數據理解(Dataunderstanding)、數據準備(Datapreparation)、建模(Modeling)、評估(Evaluation)、部署(Deployment)。而SEMMA將數據挖掘分為5個階段,即數據取樣(Sample)、數據特征探索、分析和預處理(Explore)、問題明確化、數據調整和技術選擇(Modify)、模型的研發、知識的發現(Model)、模型和知識的綜合解釋和評價(Assess)。從工作流程來看,CRISP-DM是從項目執行角度談的方法論,更關注與商業目標的結合,而SEMMA則是從具體數據探測和挖掘出發談的方法論,更關注數據探索的過程。但從具體工作內容來看,CRISP-DM和SEMMA本質上都是在數據挖掘應用中提出問題、分析問題和解決問題的過程。因此,CRISP-DM和SEMMA互不矛盾,只是強調的重點不同而已。結合企業實施數據挖掘工作的實踐經驗,經常采用PDMA數據挖掘方法。PDMA將數據挖掘分為4個階段,即定義業務問題(Problemdefinition)、數據準備(DataPreparation)、模型構建(ModelCreation)、模型應用(ModelApplication)。與CRISP-DM、SEMMA等相比,PDMA類似CRISP-DM,但又有較大差異。首先,PDMA將CRISP-DM的數據理解、數據準備做了提煉與分解。PDMA的數據準備是在滿足業務目標的前提下,確定挖掘建模的數據范圍,并構建生成寬表數據及核查數據準確性。PDMA的模型構建是在數據準備后,從數據集中采集業務問題相關的樣本數據集,探索數據的規律和趨勢,針對數據建模的數據集數據進行探索,選擇一種或幾種挖掘算法,進行模型構建及從技術和業務兩個角度進行模型評估。可見,PDMA的數據準備只負責建模挖掘寬表準備,數據探索包括衍生變量的生成、選擇等部分數據處理工作在模型構建階段實現,各階段間的工作分工也更為清晰。其次,PDMA的模型應用不僅僅是模型部署,還包括模型評分、模型監控與維護,確保當市場環境、用戶數據發生變化時,能及時判別在用的挖掘模型是否還有效、適用。對于不適用的挖掘模型及時調整優化,實現模型閉環管理。同時,PDMA的模型應用還強調模型輸出目標用戶的細分,及與市場營銷策略的匹配建議,幫助業務部門更好理解模型輸出及指導后續工作的開展。PDMA數據挖掘方法論是CRISP-DM、SEMMA等方法論的提煉優化。

  三、數據挖掘精準營銷應用

  隨著三大運營商全業務經營的迅猛發展,寬帶市場競爭激烈、市場日益飽和,越發呈現價格戰的競爭格局。借助大數據分析挖掘可精準識別寬帶營銷服務潛在目標客戶及特征,從而實現營銷服務有的放矢。

  1、定義業務問題

  (1)基于歷史數據挖掘過往寬帶營銷服務客戶寬帶使用特征、消費水平特征、上網偏好等,剖析營銷服務用戶的主要特征和原因,輸出潛在目標用戶清單。(2)在輸出潛在目標用戶清單的基礎上,對目標客戶進一步深入挖掘分群,剖析出不同人群客戶的寬帶使用、消費行為的典型特點,提出針對性營銷服務策略。(3)針對輸出的潛在目標用戶清單和分群制定具體的銷售策略,進行派單執行,跟蹤效果,做好下次模型迭代優化。

  2、數據準備

  數據準備是在滿足業務目標前提下,確定數據建模的數據范圍,描述和檢查這些數據,并構建建模寬表。針對寬帶用戶的行為特征,可以選取以下幾個數據維度:上網偏好維度、消費行為維度、產品及終端結構維度。其中,偏好類別數據主要利用DPI數據對用戶訪問的目標URL地址,進行多維度的統計計算后,得出的興趣類別標簽。輸入模型的變量要根據不同區域和每次預測的數據源動態調整。經過數據清洗、整理、派生,最終確定模型輸入變量時,主要依據對于模型輸出結果的影響顯著性選擇。

  3、模型構建

  模型構建就是在數據準備后,從數據集市中采集業務問題相關的樣本數據集,探索數據的規律和趨勢,針對數據建模的數據集數據進行修正,選擇一種或幾種挖掘方法,進行數據模型構建,從技術和業務兩個層面進行模型評估。通常情況下,主要以邏輯回歸和決策樹等作為建模主要方法,此類模型能輸出具體流失公式和規則。在進行用戶分群時,主要以聚類模型為主要方法,尋找不同類型用戶特征,制定分群針對性維系策略。

  4、模型應用

  在輸出潛在目標用戶清單的基礎上,對目標客戶進行分群。根據數據挖掘模型結果,寬帶營銷服務用戶可以分為以下5類:低需求型用戶、供給過剩型用戶、供給不足型用戶、長期高需求型用戶、短期高需求型用戶。基于分群后的目標用戶,可以針對性進行營銷服務策略匹配,如低需求型用戶可以采用寬帶資費優惠(如對上網少用戶采取特定的低資費),供給不足型用戶可以采用加快低寬帶客戶向高帶寬的遷移政策。最后進行派單執行,跟蹤效果。

  四、結束語

  大數據時代,由于信息技術的應用普及,產生了大量的數據,每年都以指數級速度增長。數據量大導致數據應用也會變得越來越困難,而借助合適的數據挖掘技術及工具,結合實際的數據挖掘方法,可以更加有效地提高數據的利用率,更深層次地挖掘出對企業精準營銷有價值的信息,實現對海量信息的掌控,讓企業實現更為精準的營銷服務。

數據挖掘論文14

  摘要:主要通過對數據挖掘技術的探討,對職教多年累積的教學數據運用分類、決策樹、關聯規則等技術進行分析,從分析的結果中發現有價值的數據模式,科學合理地實現教學評估,讓教學管理者能夠從中發現教學活動中存在的主要問題以便及時改進,進而輔助管理者決策做好教學管理。

  關鍵詞:教學評估;數據挖掘;教學評估體系;層次分析法

  1概述

  近年來國家對中等職業教育的發展高度重視,在政策扶持與職教工作者的努力下,職業教育獲得了蓬勃的發展。如何提高教學質量、培養合格的高技術人才成為職教工作者研究的課題。各種調查研究結果表明:加強師資隊伍的建設,強化教師教學評估對教學質量的提高尤為重要。

  所謂教學評估,就是運用系統科學的方法對教學活動或教育行為的價值、效果作出科學的判斷過程。教學評估方式要靈活多樣,要多途徑、多方位、多形式的發揮評估的導學作用,以鼓勵評估為主,充分發揮評估的激勵功能,促進教學的健康發展。

  在中等職業學校多年的教育教學工作中積累了大量的教務管理數據、教師檔案數據等,怎樣從龐雜大量的數據中挖掘出有效提高教學質量的關鍵因素是個難題。數據挖掘技術卻可以從人工智能的角度很好地解決這一課題。通過數據挖掘技術,得到隱藏在教學數據背后的有用信息,在一定程度上為教學部門提供決策支持信息促使更好地開展教學工作,提高教學質量和教學管理水平,使之能在功能上更加清晰地認識教師教與學生學的關系及促進教育教學改革。

  2數據挖掘技術

  2.1數據挖掘的含義

  數據挖掘就是從大量的、不完全的、有噪聲的、模糊的、隨機的數據中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識的過程。數據挖掘應該更正確地命名為“從數據中挖掘知識”。即數據挖掘是對巨大的數據集進行尋找和分析的計算機輔助處理過程,在這一過程中顯現先前未曾發現的模式,然后從這些數據中發掘某些內涵信息,包括描述過去和預測未來趨勢的信息。人工智能領域習慣稱知識發現,而數據庫領域習慣將其稱為數據挖掘。

  2.2數據挖掘的基本過程

  數據挖掘過程包括對問題的理解和提出、數據收集、數據處理、數據變換、數據挖掘、模式評估、知識表示等過程,以上的過程不是一次完成的,其中某些步驟或者全過程可能要反復進行。對問題的理解和提出在開始數據挖掘之前,最基礎的工作就是理解數據和實際的業務問題,在這個基礎之上提出問題,對目標作出明確的定義。

  2.3數據挖掘常用的算法

  2.3.1分類分析方法:是通過分析訓練集中的數據,為每個類別做出準確的描述或建立分析模型或挖掘出分類規則,以便以后利用這個分類規則對其它數據庫中的記錄進行分類的方法。2.3.2決策樹算法:是一種常用于分類、預測模型的算法,它通過將大量數據有目的的分類,從而找到一些有價值的、潛在的信息。它的主要優點是描述簡單,分類速度快,特別適合大規模的數據處理。2.3.3聚類算法:聚類分析處理的數據對象的類是未知的。聚類分析就是將對象集合分組為由類似的對象組成的多個簇的過程。在同一個簇內的對象之間具有較高的相似度,而不同簇內的對象差別較大。2.3.4關聯規則算法:側重于確定數據中不同領域之間的關系,即尋找給定數據集中的有趣聯系。提取描述數據庫中數據項之間所存在的潛在關系的規則,找出滿足給定支持度和置信度閾值的多個域之間的依賴關系。

  在以上各種算法的研究中,比較有影響的是關聯規則算法。

  3教學評估體系

  評價指標體系是教學評估的基礎和依據,對評估起著導向作用,因此制定一個科學全面的評價指標體系就成為改革、完善評價的首要目標。評價指標應以指導教學實踐為目的,通過評價使教師明確教學過程中應該肯定的和需要改進的地方;以及給出設計評價指標的導向問題。

  3.1教學評估體系的構建方法

  層次分析法(簡稱AHP法)是美國運籌學家T·L·Saaty教授在20世紀70年代初期提出的一種簡便、靈活而又實用的多準則決策的系統分析方法,其原理是把一個復雜問題分解、轉化為定量分析的方法。它需要建立關于系統屬性的各因素多級遞階結構,然后對每一層次上的因素逐一進行比較,得到判斷矩陣,通過計算判斷矩陣的特征值和特征向量,得到其關于上一層因素的相對權重,并可自上而下地用上一層次因素的相對權重加權求和,求出各層次因素關于系統整體屬性(總目標層)的綜合重要度。

  3.2構建教學評估指標體系的作用

  3.2.1構建的教學評估指標,作為挖掘庫選擇教學信息屬性的依據。

  3.2.2通過AHP方法,能篩選出用來評價教學質量的相關重要屬性,從而入選為挖掘庫字段,這樣就減去了挖掘庫中對于挖掘目標來說影響較小的屬性,進而大大減少了挖掘的工作量,提高挖掘效率。3.2.3通過構建教學評估指標,減少了挖掘對象的字段,從而避免因挖掘字段過多,導致建立的決策樹過大,出現過度擬合挖掘對象,進而造成挖掘規則不具有很好的評價效果的現象。3.2.4提高教學質量評估實施工作的效率。

  4數據挖掘在教學評估中的應用

  4.1學習效果評價學習評價是教育工作者的重要職責之一。評價學生的學習情況,既對學生起到信息反饋和激發學習動機的作用,又是檢查課程計劃、教學程序以至教學目的的手段,也是考查學生個別差異、便于因材施教的途徑。評價要遵循“評價內容要全面、評價方式要多元化、評價次數要多次化,注重自評與互評的有機結合”的原則。利用數據挖掘工具,對教師業務檔案數據庫、行為記錄數據庫、獎勵處罰數據庫等進行分析處理,可以即時得到教師教學的評價結果,對教學過程出現的問題進行及時指正。

  另外,這種系統還能夠克服教師主觀評價的不公正、不客觀的弱點,減輕教師的工作量。

  4.2課堂教學評價

  課堂教學評價不僅對教學起著調節、控制、指導和推動作用,而且有很強的導向性,是學校教學管理的重要組成部分,是評價教學工作成績的主要手段。實現對任課教師及教學組織工作效果做出評價,但是更重要的目的是總結優秀的教學經驗,為教學質量的穩定提高制定科學的規范。學校每學期都要搞課堂教學評價調查,積累了大量的數據。利用數據挖掘技術,從教學評價數據中進行數據挖掘,將關聯規則應用于教師教學評估系統中,探討教學效果的好壞與老師的年齡、職稱、學歷之間的聯系;確定教師的教學內容的范圍和深度是否合適,選擇的教學媒體是否適合所選的教學內容和教學對象;講解的時間是否恰到好處;教學策略是否得當等。從而可以及時地將挖掘出的規則信息反饋給教師。管理部門據此能合理配置班級的上課教師,使學生能夠較好地保持良好的學習態度,從而為教學部門提供了決策支持信息,促使教學工作更好地開展。

  結束語

  數據挖掘作為一種工具,其技術日趨成熟,在許多領域取得了廣泛的應用。在教育領域里,隨著數據的不斷累積,把數據挖掘技術應用到教學評價系統中,讓領導者能夠從中發現教師教學活動中的主要問題,以便及時改進,進而輔助領導決策做好學校管理,提高學校管理能力和水平,同時通過建立有效的教學激勵機制來達到提高教學質量的目的。這一研究對發展中的職業教育教學管理提出了很好的建議,為教學管理工作的計算機輔助決策增添了新的內容。將數據挖掘技術應用于中職教學評估,設計開發一套行之有效的課堂教學評價系統,是下一步要做的工作,必將有力推動職業教育的快速發展。

數據挖掘論文15

  隨著互聯網技術的快速發展,學術研究環境較以前更加開放,對傳統的科技出版業提出了開放性、互動性和快速性的要求; 因此,以信息技術為基礎的現代數字化出版方式對傳統的科技出版業產生著深刻的影響。為了順應這一趨勢,不少科技期刊都進行了數字化建設,構建了符合自身情況、基于互聯網B /S 結構的稿件處理系統。

  以中華醫學會雜志社為代表的部分科技期刊出版集團均開發使用了發行系統、廣告登記系統、在線銷售系統以及站。這些系統雖然積累了大量的原始用戶業務數據; 但從工作系統來看,由于數據本身只屬于編輯部的業務數據,因此一旦相關業務工作進行完畢,將很少再對這些數據進行分析使用。

  隨著目前人工智能和機器學習技術的發展,研究人員發現利用最新的數據挖掘方法可以對原始用戶業務數據進行有效分析和學習,找出其中數據背后隱含的內在規律。這些有價值的規律和寶貴的經驗將對后續科技期刊經營等工作提供巨大的幫助。

  姚偉欣等指出,從STM 期刊出版平臺的技術發展來看,利用數據存取、數據管理、關聯數據分析、海量數據分析等數據挖掘技術將為科技期刊的出版和發行提供有力的幫助。通過使用數據挖掘( data mining) 等各種數據處理技術,人們可以很方便地從大量不完全且含有噪聲或相對模糊的實際數據中,提取隱藏在其中有價值的信息,從而對后續科技期刊出版工作起到重要的知識發現和決策支持的作用。

  1 數據挖掘在科技期刊中應用的現狀

  傳統的數據庫對數據的處理功能包括增、刪、改、查等。這些技術均無法發現數據內在的關聯和規則,更無法根據現有數據對未來發展的趨勢進行預測。現有數據挖掘的任務可以分為對數據模型進行分類或預測、數據總結、數據聚類、關聯規則發現、序列模式發現、依賴關系發現、異常或例外點檢測以及趨勢發現等,但目前國內科技期刊行業利用數據挖掘方法進行大規模數據處理仍處在起步階段。張品純等對中國科協所屬的科技期刊出版單位的現狀進行分析后發現,中國科協科技期刊出版單位多為單刊獨立經營,單位的規模較小、實力較弱,多數出版單位不具備市場主體地位。這樣就導致國內大部分科技期刊既沒有能力進行數據挖掘,也沒有相應的數據資源準備。以數據挖掘技術應用于期刊網站為例,為了進行深入的數據分析,期刊經營人員需要找到稿件與讀者之間、讀者群體之間隱藏的內在聯系。目前,數據挖掘的基本步驟為: 1) 明確數據挖掘的對象與目標;2) 確定數據源; 3) 建立數據模型; 4) 建立數據倉庫; 5)數據挖掘分析; 6) 對象與目標的數據應用和反饋。

  2 期刊數據的資源整合

  編輯部從稿件系統、發行系統、廣告系統、站等各個系統中將相關數據進行清洗、轉換和整理,然后加載到數據倉庫中。進一步,根據業務應用的范圍和緊密度,建立相關數據集市。期刊數據資源的整合過程從數據體系上可分為數據采集層、數據存儲處理層和數據展現層。

  要獲得能夠適合企業內部多部門均可使用、挖掘和分析的數據,可以從業務的關聯性分析數據的準確性、一致性、有效性和數據的內在關聯性。

  3 期刊數據的信息挖掘

  信息挖掘為了從不同種類和形式的業務進行抽取、變換、集成數據,最后將其存儲到數據倉庫,并要對數據的質量進行維護和管理。數據挖掘可以有效地識別讀者的閱讀行為,發現讀者的閱讀模式和趨勢,對網站改進服務質量、取得更好的用戶黏稠度和滿意度、提高科技期刊經營能力有著重要的意義。作為一個分析推薦系統,我們將所分析的統計結果存儲于服務器中,在用戶或決策者需要查詢時,只需輸入要找尋的用戶信息,系統將從數據庫中抽取其個人信息,并處理返回到上網時間分布、興趣點所在、適配業務及他對于哪些業務是有價值客戶,甚至包括他在什么時段對哪類信息更感興趣等。只有這些信息才是我們的使用對象所看重和需要的。

  網站結構挖掘是挖掘網站中潛在的鏈接結構模式。通過分析一個網頁的鏈接、鏈接數量以及鏈接對象,建立網站自身的鏈接結構模式。在此過程中,如果發現某一頁面被較多鏈接所指向,則說明該頁面信息是有價值的,值得期刊工作人員做更深層次的挖掘。網站結構挖掘在具體應用時采用的結構和技術各不相同; 但主要過程均包括預處理、模式發現和模式分析3 部分。為了反映讀者興趣取向,就需要對數據庫中的數據按用戶進行抽樣分析,得到興趣點的統計結果,而個人的興趣分析也可基于此思路進行。下面以《中華醫學雜志》為例做一介紹。

  預處理預處理是網站結構挖掘最關鍵的一個環節,其處理得到的數據質量直接關系到使用數據挖掘和模式分析方法進行分析的結果。預處理步驟包括數據清洗、用戶識別、會話識別、路徑補充和事件識別。以《中華醫學雜志》網站www. nmjc. net. cn 的日志分析為例。首先給出一條已有的Log,其內容為“20xx-03-04 12: 13: 47 W3SVC80003692 172. 22. 4. 3GET /index. asp-80-123. 185. 247. 49Mozilla /5. 0 +( Windows + NT + 6. 1; + WOW64 ) + AppleWebKit /537. 36 + ( KHTML,+ like + Gecko) + Chrome /28. 0.1500. 95 + Safari /537. 36 + SE + 2. X + MetaSr + 1. 0200 0 0”。從Log 的內容,工作人員可以得到相關信息,如用戶IP、用戶訪問頁面事件、用戶訪問的頁面、用戶請求的方法、返回HTTP 狀態以及用戶瀏覽的上一頁面等內容。

  由于服務器同時部署了多個編輯部網站,這就要求工作人員必須對得到的訪問www. nmjc. net. cn 日志,去除由爬蟲軟件產生的記錄。這些記錄一般都會在日志結尾包含“Spider”的字樣。同時,還需要去除不是由GET 請求產生的日志以及請求資源不是頁面類型的日志。最后,工作人員還需要去除訪問錯誤的請求,可以根據日志中請求的狀態進行判斷。一般認為,請求狀態在( 200, 300) 范圍內是訪問正確的日志,其他如403、400 和500 等都是訪問錯誤的日志。用戶識別可以根據用戶的IP 地址和用戶的系統信息來完成。只有在IP 地址和系統信息都完全一致的情況下,才識別為一個用戶。會話識別是利用面向時間的探索法,根據超時技術來識別一個用戶的多次會話。如果用戶在一段時間內沒有任何操作,則認為會話結束。用戶在規定時間后重新訪問,則被認為不屬于此次會話,而是下次會話的開始。

  利用WebLogExplore 分析日志、用戶和網頁信息在獲得了有效的日志數據后,工作人員可以利用一些有效數據挖掘算法進行模式發現。目前,主要的數據挖掘方法有統計分析、關聯規則、分類、聚類以及序列模式等技術。本文主要討論利用Apriori 算法來發現科技期刊日志數據中的關聯規則。本質上數據挖掘不是用來驗證某個假定的模式的正確性,而是在數據庫中自己尋找模型,本質是一個歸納的過程。支持度( Support) 的公式定義為: Support ( A≥B) = P( A ∪B) 。支持度可以用于度量事件A 與B 同時出現的概率。如果事件A 與B 同時出現的概率較小,說明事件A 與B 的關系不大; 如果事件A 與B 同時出現非常頻繁,則說明事件A 與B 總是相關的。置信度( Confidence) 的公式定義為: Confidence( A≥B) = P( A | B) 。置信度揭示了事件A 出現時,事件B 是否也會出現或有多大概率出現。如果置信度為100%,則事件A 必然會導致事件B 出現。置信度太低,說明事件A 的出現與事件B 是否出現關系不大。

  對所有的科技期刊日志數據進行預處理后,利用WebLogExplore 軟件可得到日志匯總表。表中存儲了所有用戶訪問網站頁面的詳細信息,工作人員可將其導入數據庫中。以查看到所選擇用戶訪問期刊頁面的詳細信息。

  同樣,在WebLogExplore 軟件中選擇感興趣的頁面,可以查看所有用戶訪問該頁面的統計信息,如該頁面的訪問用戶數量等。工作人員可以對用戶訪問排名較高的頁面進行進一步的模式分析。

  步驟1: 將圖2 日志信息匯總表中的數據導入數據庫中,建立日志總表。

  步驟2: 在數據庫中建立一個新表命名為tj。

  步驟3: 通過查詢程序得到日志總表中每一個用戶訪問的頁面,同時做distinct 處理。

  步驟4: 將查詢得到的用戶訪問頁面記錄進行判斷。如果用戶訪問過排名前20 位的某個頁面,則在數據庫中寫入true,否則寫入false。依次循環判斷寫入數據庫中。

  步驟5: 統計每個訪問排名靠前頁面的支持度,設置一維項目集的最小閥值( 10%) 。

  步驟6: 統計大于一維閥值的頁面,寫入數組,并對數組內部頁面進行兩兩組合,統計每個組合2 個頁面值均為true 時的二維項目集的支持度。

  步驟7: 設置二維項目集支持度的閥值,依次統計三維項目集支持度和置信度( A≥B) ,即當A 頁面為true 時,統計B 頁面為true 的數量,除以A 為true 的數量。設置相應的置信度閥值,找到訪問排名靠前頁面之間較強的關聯規則。

  4 數據挖掘技術應用的意義

  1) 對頻繁訪問的用戶,可以使用用戶識別技術分析此用戶的歷史訪問記錄,得到他經常訪問的頁面。當該用戶再次登錄系統時,可以對其進行個性化提示或推薦。這樣,既方便用戶使用,也可將系統做得更加友好。很多OA 期刊網站,不具備歷史瀏覽記錄的功能; 但瀏覽記錄對用戶來講其實十分重要,隱含了用戶對文章的篩選過程,所以對用戶經常訪問的頁面需要進行優化展示,不能僅僅提供鏈接地址,需要將文章題名、作者、關鍵詞等信息以列表的方式予以顯示。

  2) 由數據挖掘技術而產生的頻繁項目集的分析,可以對網站的結構進行改進。支持度很高的頁面,說明該頁面的用戶訪問量大。為了方便用戶以及吸引更多的讀者,可以將這些頁面放置在更容易被訪問的位置,科技期刊的網站內容一般以年、卷、期的形式展示。用戶如果想查看某一篇影響因子很高的文章,也必須通過年卷期的方式來查看,非常不方便而且頁面友好性不高。通過數據挖掘的分析,編輯部可以把經常被訪問或者高影響因子的文章放在首頁展示。

  3) 對由數據挖掘技術產生的頻繁項目集的分析,可以發現用戶的關注熱點。若某些頁面或項目被用戶頻繁訪問,則可以用這些數據對用戶進行分析。一般來說科技期刊的讀者,每個人的專業和研究方向都是不同的,編輯部可以通過數據挖掘技術來判斷讀者的研究方向和感興趣的熱點,對每一個用戶進行有針對性的內容推送和消息發送。

  4) 網站管理者可以根據在不同時間內頻繁項目集的變化情況對科技期刊網站進行有針對性的調整,比如加入更多關于該熱點的主題資源。目前大多數科技期刊網站首頁的內容,均為編輯部工作人員后臺添加、置頂、高亮來吸引用戶的; 通過數據挖掘技術,完全可以擯棄這種展示方式。編輯部網站的用戶訪問哪些頁面頻繁,系統便會自動將這些頁面的文章推向首頁,不需要編輯部的人工干預,整個網站實現自動化運行。

  5 后記

  本文重點討論了數據挖掘技術與科技期刊網站頁面之間的關系。其實我們還可以從很多方面進行數據挖掘,比如可以對網站的用戶和內容進行數據挖掘,通過分析可以為后期的期刊經營做好鋪墊。

  有一點很重要,沒有一種數據挖掘的分析方法可以應付所有的需求。對于某一種問題,數據本身的特性會影響你的選擇,需要用到許多不同的數據挖掘方法以及技術從數據中找到最佳的模型。

  在目前深化文化體制改革,推動社會主義文化大發展、大繁榮的政治形勢下,利用數據挖掘技術從中進行提取、分析和應用,能有效地幫助企業了解客戶、改進系統、制訂合理的市場策略、提高企業的銷售水平和利潤。通過利用數據挖掘技術準確定位優質客戶,向客戶提供更精確、更有價值的個性化服務。這將成為未來科技期刊經營十分重要的突破點和增長點。

【數據挖掘論文】相關文章:

Web結構的數據挖掘HITS算法論文03-29

什么是數據分析和數據挖掘01-14

數據挖掘分析報告模板01-18

數據挖掘技術在網絡病毒防御中的運用論文04-26

數據挖掘技術分析醫院信息管理論文12-25

語文寫作創新力的挖掘與培育論文03-27

大神面試京東數據挖掘和機器學習崗位成功拿到offer01-07

數據庫設計論文致謝詞04-11

百度校園招聘數據挖掘工程師面試題集錦01-31

淺究基于數據挖掘技術的圖書館個性化信息服務06-20

主站蜘蛛池模板: 新竹县| 龙山县| 鹤岗市| 仪征市| 徐汇区| 凤凰县| 蓬溪县| 桂平市| 海盐县| 舞钢市| 开原市| 郁南县| 丹寨县| 二手房| 怀仁县| 开江县| 梓潼县| 天峻县| 囊谦县| 许昌县| 获嘉县| 高淳县| 嘉定区| 琼中| 鄯善县| 宜川县| 镇原县| 罗甸县| 吉安市| 铁岭市| 德阳市| 舒兰市| 马边| 民县| 方山县| 拜城县| 应城市| 台中县| 罗源县| 景谷| 彝良县|