两个人做人爱视频免费,97久久精品人人搡人妻人人玩,欧洲精品码一区二区三区,999zyz玖玖资源站永久

我要投稿 投訴建議

中考數學知識點總結

時間:2024-05-24 14:53:50 中考 我要投稿

中考數學知識點總結

  總結是事后對某一階段的學習、工作或其完成情況加以回顧和分析的一種書面材料,它可以有效鍛煉我們的語言組織能力,因此十分有必須要寫一份總結哦。那么如何把總結寫出新花樣呢?下面是小編為大家整理的中考數學知識點總結,歡迎大家借鑒與參考,希望對大家有所幫助。

中考數學知識點總結

中考數學知識點總結1

  1、有理數的`加法運算:

  同號相加一邊倒;異號相加“大”減“小”,符號跟著大的跑;絕對值相等“零”正好、

  2、合并同類項:

  合并同類項,法則不能忘,只求系數和,字母、指數不變樣、

  3、去、添括號法則:

  去括號、添括號,關鍵看符號,括號前面是正號,去、添括號不變號,括號前面是負號,去、添括號都變號、

  4、一元一次方程:

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒、

  5、平方差公式:

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆、

  1、完全平方公式:

  完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央、

  2、因式分解:

  一提(公因式)二套(公式)三分組,細看幾項不離譜,兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,四項仔細看清楚,若有三個平方數(項),就用一三來分組,否則二二去分組,五項、六項更多項,二三、三三試分組,以上若都行不通,拆項、添項看清楚、

  3、單項式運算:

  加、減、乘、除、乘(開)方,三級運算分得清,系數進行同級(運)算,指數運算降級(進)行、

  4、一元一次不等式解題的一般步驟:

  去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,兩邊除(以)負數時,不等號改向別忘了、

  5、一元一次不等式組的解集:

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找、

  一元二次不等式、一元一次絕對值不等式的解集:

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

中考數學知識點總結2

  有理數:

  (1)凡能寫成形式的數,都是有理數,整數和分數統稱有理數.

  注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;不是有理數;

  (2)有理數的分類:①②

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的`數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0a是負數或0a是非正數.

中考數學知識點總結3

  一、 重要概念

  1。數的分類及概念

  數系表:

  說明:“分類”的原則:1)相稱(不重、不漏)

  2)有標準

  2。非負數:正實數與零的'統稱。(表為:x≥0)

  常見的非負數有:

  性質:若干個非負數的和為0,則每個非負擔數均為0。

  3。倒數: ①定義及表示法

  ②性質:A.a≠1/a(a≠±1);B.1/a中,a≠0;C.01;a1時,1/a1;D。積為1。

  4。相反數: ①定義及表示法

  ②性質:A.a≠0時,a≠-a;B.a與-a在數軸上的位置;C。和為0,商為-1。

  5。數軸:①定義(“三要素”)

  ②作用:A。直觀地比較實數的大小;B。明確體現絕對值意義;C。建立點與實數的一一對應關系。

  6。奇數、偶數、質數、合數(正整數—自然數)

  定義及表示:

  奇數:2n-1

  偶數:2n(n為自然數)

  7。絕對值:①定義(兩種):

  代數定義:

  幾何定義:數a的絕對值頂的幾何意義是實數a在數軸上所對應的點到原點的距離。

  ②│a│≥0,符號“││”是“非負數”的標志;③數a的絕對值只有一個;④處理任何類型的題目,只要其中有“││”出現,其關鍵一步是去掉“││”符號。

中考數學知識點總結4

  (1)凡能寫成形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類:①整數②分數

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數0和正整數;a>0a是正數;a<0a是負數;

  a≥0a是正數或0a是非負數;a≤0?a是負數或0a是非正數.

  有理數比大小:

  (1)正數的絕對值越大,這個數越大;

  (2)正數永遠比0大,負數永遠比0小;

  (3)正數大于一切負數;

  (4)兩個負數比大小,絕對值大的`反而小;

  (5)數軸上的兩個數,右邊的數總比左邊的數大;

  (6)大數-小數>0,小數-大數<0.

中考數學知識點總結5

  圓的初步認識

  一、圓及圓的相關量的定義(28個)

  1.平面上到定點的距離等于定長的所有點組成的圖形叫做圓。定點稱為圓心,定長稱為半徑。

  2.圓上任意兩點間的部分叫做圓弧,簡稱弧。大于半圓的弧稱為優弧,小于半圓的弧稱為劣弧。連接圓上任意兩點的線段叫做弦。經過圓心的弦叫做直徑。

  3.頂點在圓心上的角叫做圓心角。頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角。

  4.過三角形的三個頂點的圓叫做三角形的外接圓,其圓心叫做三角形的外心。和三角形三邊都相切的圓叫做這個三角形的內切圓,其圓心稱為內心。

  5.直線與圓有3種位置關系:無公共點為相離;有2個公共點為相交;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點。

  6.兩圓之間有5種位置關系:無公共點的,一圓在另一圓之外叫外離,在之內叫內含;有唯一公共點的,一圓在另一圓之外叫外切,在之內叫內切;有2個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。

  7.在圓上,由2條半徑和一段弧圍成的圖形叫做扇形。圓錐側面展開圖是一個扇形。這個扇形的半徑成為圓錐的母線。

  二、有關圓的字母表示方法(7個)

  圓--⊙ 半徑r 弧--⌒ 直徑d

  扇形弧長/圓錐母線l 周長C 面積S三、有關圓的基本性質與定理(27個)

  1.點P與圓O的位置關系(設P是一點,則PO是點到圓心的距離):

  P在⊙O外,POP在⊙O上,PO=r;P在⊙O內,PO

  2.圓是軸對稱圖形,其對稱軸是任意一條過圓心的.直線。圓也是中心對稱圖形,其對稱中心是圓心。

  3.垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的弧。

  4.在同圓或等圓中,如果2個圓心角,2個圓周角,2條弧,2條弦中有一組量相等,那么他們所對應的其余各組量都分別相等。

  5.一條弧所對的圓周角等于它所對的圓心角的一半。

  6.直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。

  7.不在同一直線上的3個點確定一個圓。

  8.一個三角形有唯一確定的外接圓和內切圓。外接圓圓心是三角形各邊垂直平分線的交點,到三角形3個頂點距離相等;內切圓的圓心是三角形各內角平分線的交點,到三角形3邊距離相等。

  9.直線AB與圓O的位置關系(設OPAB于P,則PO是AB到圓心的距離):

  AB與⊙O相離,POAB與⊙O相切,PO=r;AB與⊙O相交,PO

  10.圓的切線垂直于過切點的直徑;經過直徑的一端,并且垂直于這條直徑的直線,是這個圓的切線。

  11.圓與圓的位置關系(設兩圓的半徑分別為R和r,且Rr,圓心距為P):

  外離P外切P=R+r;相交R-r

  三、有關圓的計算公式

  1.圓的周長C=2d 2.圓的面積S=s=3.扇形弧長l=nr/180

  4.扇形面積S=n/360=rl/2 5.圓錐側面積S=rl

  四、圓的方程

  1.圓的標準方程

  在平面直角坐標系中,以點O(a,b)為圓心,以r為半徑的圓的標準方程是

  (x-a)^2+(y-b)^2=r^2

  2.圓的一般方程

  把圓的標準方程展開,移項,合并同類項后,可得圓的一般方程是

  x^2+y^2+Dx+Ey+F=0

  和標準方程對比,其實D=-2a,E=-2b,F=a^2+b^2

  相關知識:圓的離心率e=0.在圓上任意一點的曲率半徑都是r.

  五、圓與直線的位置關系判斷

  鏈接:圓與直線的位置關系(一.5)

  平面內,直線Ax+By+C=O與圓x^2+y^2+Dx+Ey+F=0的位置關系判斷一般方法是

  討論如下2種情況:

  (1)由Ax+By+C=O可得y=(-C-Ax)/B,[其中B不等于0],

  代入x^2+y^2+Dx+Ey+F=0,即成為一個關于x的一元二次方程f(x)=0.

  利用判別式b^2-4ac的符號可確定圓與直線的位置關系如下:

  如果b^2-4ac0,則圓與直線有2交點,即圓與直線相交

  如果b^2-4ac=0,則圓與直線有1交點,即圓與直線相切

  如果b^2-4ac0,則圓與直線有0交點,即圓與直線相離

  (2)如果B=0即直線為Ax+C=0,即x=-C/A.它平行于y軸(或垂直于x軸)

  將x^2+y^2+Dx+Ey+F=0化為(x-a)^2+(y-b)^2=r^2

  令y=b,求出此時的兩個x值x1,x2,并且我們規定x1

  當x=-C/Ax2時,直線與圓相離

  當x1

  當x=-C/A=x1或x=-C/A=x2時,直線與圓相切

  圓的定理:

  1不在同一直線上的三點確定一個圓。

  2垂徑定理 垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1

  ①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2

  1圓的兩條平行弦所夾的弧相等

  3圓是以圓心為對稱中心的中心對稱圖形

  4圓是定點的距離等于定長的點的集合

  5圓的內部可以看作是圓心的距離小于半徑的點的集合

  6圓的外部可以看作是圓心的距離大于半徑的點的集合

  希望這篇20xx中考數學知識點匯總,可以幫助更好的迎接即將到來的考試!

中考數學知識點總結6

  一、代數式

  1. 概念:用基本的運算符號(加、減、乘、除、乘方、開方)把數與字母連接而成的式子叫做代數式。單獨的一個數或字母也是代數式。

  2. 代數式的值:用數代替代數式里的字母,按照代數式的運算關系,計算得出的結果。

  二、整式

  單項式和多項式統稱為整式。

  1. 單項式:1)數與字母的乘積這樣的代數式叫做單項式。單獨的一個數或字母(可以是兩個數字或字母相乘)也是單項式。

  2) 單項式的系數:單項式中的 數字因數及性質符號叫做單項式的系數。

  3) 單項式的次數:一個單項式中,所有字母的指數的和叫做這個單項式的次數。

  2. 多項式:1)幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數項。一個多項式有幾項就叫做幾項式。

  2)多項式的次數:多項式中,次數最高的項的次數,就是這個多項式的次數。

  3. 多項式的排列:

  1).把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  2).把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

  三、整式的運算

  1. 同類項——所含字母相同,并且相同字母的次數也相同的項叫做同類項,幾個常數項也叫同類項。同類項與系數無關,與字母排列的順序也無關。

  2. 合并同類項:把多項式中的同類項合并成一項叫做合并同類項。即同類項的系數相加,所得結果作為系數,字母和字母的'指數不變。

  3. 整式的加減:有括號的先算括號里面的,然后再合并同類項。

  4. 冪的運算:

  5. 整式的乘法:

  1) 單項式與單項式相乘法則:把它們的系數、同底數冪分別相乘,其余只在一個單項式里含有的字母連同它的指數作為積的因式。

  2) 單項式與多項式相乘法則:用單項式去乘多項式的每一項,再把所得的積相加。

  3) 多項式與多項式相乘法則:先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。

  6. 整式的除法

  1) 單項式除以單項式:把系數與同底數冪分別相除作為上的因式,對于只在被除式里含有的字母,則連同它的指數作為商的一個因式。

  2) 多項式除以單項式:把這個多項式的每一項除以單項式,再把所得的商相加。

  四、因式分解——把一個多項式化成幾個整式的積的形式

  1) 提公因式法:(公因式——多項式各項都含有的公共因式)吧公因式提到括號外面,將多項式寫成因式乘積的形式。 取各項系數的最大公約數作為因式的系數,取相同字母最低次冪的積。公因式可以是單項式,也可以是多項式。

  2) 公式法:A.平方差公式; B.完全平方公式

中考數學知識點總結7

  1.單項式:在代數式中,若只含有乘法(包括乘方)運算。或雖含有除法運算,但除式中不含字母的一類代數式叫單項式;數字或字母的乘積叫單項式(單獨的一個數字或字母也是單項式)。

  2.系數:單項式中的數字因數叫做這個單項式的系數。所有字母的指數之和叫做這個單項式的次數。任何一個非零數的零次方等于1.

  3.多項式:幾個單項式的和叫多項式。

  4.多項式的項數與次數:多項式中所含單項式的個數就是多項式的項數,每個單項式叫多項式的項;多項式里,次數最高項的次數叫多項式的次數。

  5.常數項:不含字母的項叫做常數項。

  6.多項式的排列

  (1)把一個多項式按某一個字母的指數從大到小的順序排列起來,叫做把多項式按這個字母降冪排列。

  (2)把一個多項式按某一個字母的指數從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。

  7.多項式的排列時注意:

  (1)由于單項式的項,包括它前面的性質符號,因此在排列時,仍需把每一項的性質符號看作是這一項的一部分,一起移動。

  (2)有兩個或兩個以上字母的多項式,排列時,要注意:

  a.先確認按照哪個字母的指數來排列。

  b.確定按這個字母向里排列,還是向外排列。

  (3)整式:

  單項式和多項式統稱為整式。

  8.多項式的加法:

  多項式的加法,是指多項式的同類項的系數相加(即合并同類項)。

  9.同類項:所含字母相同,并且相同字母的次數也分別相同的項叫做同類項。

  10.合并同類項:多項式中的同類項可以合并,叫做合并同類項,合并同類項的法則是:同類項的系數相加,所得的結果作為系數,字母與字母的指數不變。

  11.掌握同類項的概念時注意:

  (1)判斷幾個單項式或項,是否是同類項,就要掌握兩個條件:

  ①所含字母相同。

  ②相同字母的次數也相同。

  (2)同類項與系數無關,與字母排列的順序也無關。

  (3)所有常數項都是同類項。

  12.合并同類項步驟:

  (1)準確的找出同類項;

  (2)逆用分配律,把同類項的系數加在一起(用小括號),字母和字母的指數不變;

  (3)寫出合并后的結果。

  13.在掌握合并同類項時注意:

  (1)如果兩個同類項的系數互為相反數,合并同類項后,結果為0;

  (2)不要漏掉不能合并的項;

  (3)只要不再有同類項,就是結果(可能是單項式,也可能是多項式)。

  14.整式的拓展

  整式的乘除:重點是整式的乘除,尤其是其中的乘法公式。乘法公式的結構特征以及公式中的'字母的廣泛含義,學生不易掌握.因此,乘法公式的靈活運用是難點,添括號(或去括號)時,括號中符號的處理是另一個難點。添括號(或去括號)是對多項式的變形,要根據添括號(或去括號)的法則進行。在整式的乘除中,單項式的乘除是關鍵,這是因為,一般多項式的乘除都要“轉化”為單項式的乘除。

  整式四則運算的主要題型有:

  (1)單項式的四則運算

  此類題目多以選擇題和應用題的形式出現,其特點是考查單項式的四則運算。

  (2)單項式與多項式的運算

  

中考數學知識點總結8

  1. 因式分把一個多項式化為幾個整式的積的形式,叫做把這個多項式因式分解;注意:因式分解與乘法是相反的兩個轉化.

  2.因式分解的方法:常用“提取公因式法”、“公式法”、“分組分解法”、“十字相乘法”.

  3.公因式的確定:系數的最大公約數?相同因式的最低次冪.

  注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3.

  4.因式分解的公式:

  (1)平方差公式: a2-b2=(a+ b)(a- b);

  (2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2.

  5.因式分解的注意事項:

  (1)選擇因式分解方法的一般次序是:一 提取、二 公式、三 分組、四 十字;

  (2)使用因式分解公式時要特別注意公式中的字母都具有整體性;

  (3)因式分解的最后結果要求分解到每一個因式都不能分解為止;

  (4)因式分解的最后結果要求每一個因式的首項符號為正;

  (5)因式分解的`最后結果要求加以整理;

  (6)因式分解的最后結果要求相同因式寫成乘方的形式.

  6.因式分解的解題技巧:(1)換位整理,加括號或去括號整理;(2)提負號;(3)全變號;(4)換元;(5)配方;(6)把相同的式子看作整體;(7)靈活分組;(8)提取分數系數;(9)展開部分括號或全部括號;(10)拆項或補項.

  7.完全平方式:能化為(m+n)2的多項式叫完全平方式;對于二次三項式x2+px+q, 有“ x2+px+q是完全平方式 ? ”.

中考數學知識點總結9

  1、二次函數的概念

  一般地,如果,那么y叫做x 的二次函數。

  叫做二次函數的一般式。

  2、二次函數的`像

  二次函數的像是一條關于對稱的曲線,這條曲線叫拋物線。

  拋物線的主要特征:

  ①有開口方向;②有對稱軸;③有頂點。

  3、二次函數像的畫法

  五點法:

  (1)先根據函數解析式,求出頂點坐標,在平面直角坐標系中描出頂點M,并用虛線畫出對稱軸

  (2)求拋物線與坐標軸的交點:

  當拋物線與x軸有兩個交點時,描出這兩個交點A,B及拋物線與y軸的交點C,再找到點C的對稱點D。將這五個點按從左到右的順序連接起來,并向上或向下延伸,就得到二次函數的像。

  當拋物線與x軸只有一個交點或無交點時,描出拋物線與y軸的交點C及對稱點D。由C、M、D三點可粗略地畫出二次函數的草。如果需要畫出比較精確的像,可再描出一對對稱點A、B,然后順次連接五點,畫出二次函數的像。

中考數學知識點總結10

  一、知識點:

  1、“三線八角”

  ①如何由線找角:一看線,二看型。同位角是“F”型;內錯角是“Z”型;同旁內角是“U”型。

  ②如何由角找線:組成角的三條線中的公共直線就是截線。

  2、平行公理:

  如果兩條直線都和第三條直線平行,那么這兩條直線也平行。簡述:平行于同一條直線的兩條直線平行。補充定理:

  如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。簡述:垂直于同一條直線的兩條直線平行。

  3、平行線的判定和性質:

  判定定理條件同位角相等內錯角相等同旁內角互補結論兩直線平行兩直線平行兩直線平行條件兩直線平行兩直線平行兩直線平行性質定理結論同位角相等內錯角相等同旁內角互補

  4、圖形平移的性質:

  圖形經過平移,連接各組對應點所得的線段互相平行(或在同一直線上)并且相等。

  5、三角形三邊之間的關系:

  三角形的任意兩邊之和大于第三邊;三角形的任意兩邊之差小于第三邊。

  若三角形的三邊分別為a、b、c,則abcab

  6、三角形中的主要線段:

  三角形的高、角平分線、中線。

  注意:

  ①三角形的高、角平分線、中線都是線段。

  ②高、角平分線、中線的應用。

  7、三角形的內角和:

  三角形的3個內角的和等于180°;直角三角形的兩個銳角互余;

  三角形的一個外角等于與它不相鄰的兩個內角的和;三角形的一個外角大于與它不相鄰的任意一個內角。

  8、多邊形的內角和:

  n邊形的內角和等于(n-2)180°;任意多邊形的外角和等于360°。

  第八章冪的運算

  nn

  冪(power)指乘方運算的結果。a指將a自乘n次(n個a相乘)。把a看作乘方的結果,叫做a的n次冪。

  對于任意底數a,b,當m,n為正整數時,有

  mnm+n

  aa=a(同底數冪相乘,底數不變,指數相加)mnm-n

  a÷a=a(同底數冪相除,底數不變,指數相減)mnmn(a)=a(冪的乘方,底數不變,指數相乘)

  nnn

  (ab)=aa(積的乘方,把積的每一個因式乘方,再把所得的冪相乘)0

  a=1(a≠0)(任何不等于0的數的0次冪等于1)-nn

  a=1/a(a≠0)(任何不等于0的數的-n次冪等于這個數的n次冪的倒數)

  n

  科學記數法:把一個絕對值大于10(或者小于1)的整數記為a10的形式(其中1≤|a|<10),這種記數法叫做科學記數法.

  復習知識點:

  1.乘方的概念

  求n個相同因數的積的運算,叫做乘方,乘方的結果叫做冪。在a中,a叫做底數,n叫做指數。

  2.乘方的性質

  (1)負數的奇次冪是負數,負數的偶次冪的正數。

  2

  n(2)正數的任何次冪都是正數,0的任何正整數次冪都是0。

  第九章整式的乘法與因式分解

  一、整式乘除法

  單項式與單項式相乘,把它們的系數,相同字母分別相乘,對于只在一個單項式里含有的字

  52525+27

  母,則連同它的指數作為積的一個因式.acbc=(ab)(cc)=abc=abc注:運算順序先乘方,后乘除,最后加減

  單項式相除,把系數與同底數冪分別相除作為商的因式,只在被除式里含有的字母,則連同它的指數作為商的一個因式

  單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,m(a+b+c)=ma+mb+mc注:不重不漏,按照順序,注意常數項、負號.本質是乘法分配律。

  多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.

  多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相乘(a+b)(m+n)=am+an+bm+bn

  乘法公式:平方差公式:兩個數的和與這兩個數的差的積,等于這兩個數的平方差.

  22

  (a+b)(a-b)=a-b

  完全平方公式:兩數和[或差]的平方,等于它們的平方和,加[或減]它們積的2

  222

  倍.(a±b)=a±2ab+b

  因式分解:把一個多項式化成幾個整式積的形式,也叫做把這個多項式分解因式.因式分解方法:

  1、提公因式法.關鍵:找出公因式

  公因式三部分:

  ①系數(數字)一各項系數最大公約數;

  ②字母--各項含有的相同字母;

  ③指數--相同字母的最低次數;

  步驟:

  第一步是找出公因式;

  第二步是提取公因式并確定另一因式.

  需注意,提取完公因式后,另一個因式的項數與原多項式的項數一致,這一點可用來檢驗是否漏項.

  注意:

  ①提取公因式后各因式應該是最簡形式,即分解到“底”;

  ②如果多項式的第一項的系數是負的,一般要提出“-”號,使括號內的第一項的系數是正的.

  22

  2、公式法.

  ①a-b=(a+b)(a-b)兩個數的平方差,等于這兩個數的和與這兩個數的差的積a、

  222

  b可以是數也可是式子

  ②a±2ab+b=(a±b)完全平方兩個數平方和加上或減去這兩個數的積的2倍,等于這兩個數的和[或差]的平方.3322

  ③x-y=(x-y)(x+xy+y)立方差公式

  2

  3、十字相乘(x+p)(x+q)=x+(p+q)x+pq因式分解三要素:

  (1)分解對象是多項式,分解結果必須是積的形式,且積的因式必須是整式

  (2)因式分解必須是恒等變形;

  (3)因式分解必須分解到每個因式都不能分解為止.弄清因式分解與整式乘法的內在的關系:互逆變形,因式分解是把和差化為積的`形式,而整式乘法是把積化為和差

  添括號法則:如括號前面是正號,括到括號里的各項都不變號,如括號前是負號各項都得改符號。用去括號法則驗證

  第十章二元一次方程組

  1、含有兩個未知數,并且所含未知數的項的次數都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。

  2、含有兩個未知數的兩個一次方程所組成的方程組叫做二元一次方程組。

  3、二元一次方程組中兩個方程的公共解叫做二元一次方程組的解。

  4、代入消元法:把二元一次方程中一個方程的一個未知數用含另一個未知數的式子表示出來,再帶入另一個方程,實現消元,進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。

  5、加減消元法:當方程中兩個方程的某一未知數的系數相等或互為相反數時,把這兩個方程的兩邊相加或相減來消去這個未知數,從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡稱加減法.

  6、二元一次方程組解應用題的一般步驟可概括為“審、找、列、解、答”五步,即:

  (1)審:通過審題,把實際問題抽象成數學問題,分析已知數和未知數,并用字母表示其中的兩個未知數;

  (2)找:找出能夠表示題意兩個相等關系;

  (3)列:根據這兩個相等關系列出必需的代數式,從而列出方程組;

  (4)解:解這個方程組,求出兩個未知數的值;

  (5)答:在對求出的方程的解做出是否合理判斷的基礎上,寫出答案.

  第十一章一元一次不等式

  一元一次不等式

  重點:不等式的性質和一元一次不等式的解法。

  難點:一元一次不等式的解法和一元一次不等式解決在現實情景下的實際問題。知識點一:不等式的概念

  1.不等式:

  用“<”(或“≤”),“>”(或“≥”)等不等號表示大小關系的式子,叫做不等式.用“≠”表示不等關系的式子也是不等式.

  要點詮釋:

  (1)不等號的類型:

  ①“≠”讀作“不等于”,它說明兩個量之間的關系是不等的,但不能明確兩個量誰大誰小;

  (2)要正確用不等式表示兩個量的不等關系,就要正確理解“非負數”、“非正數”、“不大于”、“不小于”等數學術語的含義。

  2.不等式的解:

  能使不等式成立的未知數的值,叫做不等式的解。要點詮釋:

  由不等式的解的定義可以知道,當對不等式中的未知數取一個數,若該數使不等式成立,則這個數就是不等式的一個解,我們可以和方程的解進行對比理解,一般地,要判斷一個數是否為不等式的解,可將此數代入不等式的左邊和右邊利用不等式的概念進行判斷。

  3.不等式的解集:

  一般地,一個含有未知數的不等式的所有解,組成這個不等式的解集。求不等式的解集的過程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區別:解集是能使不等式成立的未知數的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數的值.二者的關系是:解集包括解,所有的解組成了解集。要點詮釋:

  不等式的解集必須符合兩個條件:

  (1)解集中的每一個數值都能使不等式成立;

  (2)能夠使不等式成立的所有的數值都在解集中。知識點

  二:不等式的基本性質

  基本性質1:不等式的兩邊都加上(或減去)同一個整式,不等號的方向不變。符號語言表示為:如果,那么

  基本性質2:不等式的兩邊都乘上(或除以)同一個正數,不等號的方向不變。

  符號語言表示為:如果,并且,那么(或)。

  基本性質3:不等式的兩邊都乘上(或除以)同一個負數,不等號的方向改變。

  符號語言表示為:如果要點詮釋:,并且,那么(或)

  (1)不等式的基本性質1的學習與等式的性質的學習類似,可對比等式的性質掌握;

  (2)要理解不等式的基本性質1中的“同一個整式”的含義不僅包括相同的數,還有相同的單項式或多項式;

  (3)“不等號的方向不變”,指的是如果原來是“>”,那么變化后仍是“>”;如果原來是“≤”,那么變化后仍是“≤”;“不等號的方向改變”指的是如果原來是“>”,那么變化后將成為“<”;如果原來是“≤”,那么變化后將成為“≥”;

  (4)運用不等式的性質對不等式進行變形時,要特別注意性質3,在乘(除)同一個數時,必須先弄清這個數是正數還是負數,如果是負數,要記住不等號的方向一定要改變。知識點三:一元一次不等式的概念

  只含有一個未知數,且含未知數的式子都是整式,未知數的次數是1,系數不為0.這樣的不等式,叫做一元一次不等式。要點詮釋:

  (1)一元一次不等式的概念可以從以下幾方面理解:

  ①左右兩邊都是整式(單項式或多項式);

  ②只含有一個未知數;

  ③未知數的最高次數為1。

  (2)一元一次不等式和一元一次方程可以對比理解。

  相同點:二者都是只含有一個未知數,未知數的最高次數都是1,左右兩邊都是整式;不同點:一元一次不等式表示不等關系(用“>”、“<”、“≥”、“≤”連接),一元一次方程表示相等關系(用“=”連接)。知識點

  四:一元一次不等式的解法

  1.解不等式:

  求不等式解的過程叫做解不等式。

  2.一元一次不等式的解法:

  與一元一次方程的解法類似,其根據是不等式的基本性質,解一元一次不等式的一般步驟為:

  (1)去分母;

  (2)去括號;

  (3)移項;

  (4)合并同類項;

  (5)系數化為

  1.要點詮釋:

  (1)在解一元一次不等式時,每個步驟并不一定都要用到,可根據具體問題靈活運用

  (2)解不等式應注意:

  ①去分母時,每一項都要乘同一個數,尤其不要漏乘常數項;

  ②移項時不要忘記變號;

  ③去括號時,若括號前面是負號,括號里的每一項都要變號;

  ④在不等式兩邊都乘(或除以)同一個負數時,不等號的方向要改變。

  3.不等式的解集在數軸上表示:

  在數軸上可以直觀地把不等式的解集表示出來,能形象地說明不等式有無限多個解,它對以后正確確定一元一次不等式組的解集有很大幫助。要點詮釋:

  在用數軸表示不等式的解集時,要確定邊界和方向:

  (1)邊界:有等號的是實心圓圈,無等號的是空心圓圈;

  (2)方向:大向右,小向左規律方法指導(包括對本部分主要題型、思想、方法的總結)

  1、不等式的基本性質是解不等式的主要依據。(性質2、3要倍加小心)

  2、檢驗一個數值是不是已知不等式的解,只要把這個數代入不等式,然后判斷不等式是否成立,若成立,就是不等式的解;若不成立,則就不是不等式的解。

  3、解一元一次不等式是一個有目的、有根據、有步驟的不等式變形,最終目的是將原不等式變為

  或

  的形式,其一般步驟是:

  (1)去分母;

  (2)去括號;

  (3)移項;

  (4)合并同類項;

  (5)化未知數的系數為1。

  這五個步驟根據具體題目,適當選用,合理安排順序。但要注意,去分母或化未知數的系數為1時,在不等式兩邊同乘以(或除以)同一個非零數時,如果是個正數,不等號方向不變,如果是個負數,不等號方向改變。

  解一元一次不等式的一般步驟及注意事項變形名稱具體做法注意事項去分母

  (1)不含分母的項不能漏乘

  (2)注意分數線有括號作用,去掉分在不等式兩邊同乘以分母的最小公倍數母后,如分子是多項式,要加括號

  (3)不等式兩邊同乘以的數是個負數,不等號方向改變。

  (1)運用分配律去括號時,不要漏乘根據題意,由內而外或由外而內去括號均括號內的項可

  (2)如果括號前是“”號,去括號時,括號內的各項要變號把含未知數的項都移到不等式的一邊(通7去括號移項移項(過橋)變號常是左邊),不含未知數的項移到不等式的另一邊把不等式兩邊的同類項分別合并,把不等合并同類項式化為或的形式合并同類項只是將同類項的系數相加,字母及字母的指數不變。

  在不等式兩邊同除以未知數的系數,若且,則不等式的解集為;若系數化1且,則不等式的

  (1)分子、分母不能顛倒

  (2)不等號改不改變由系數的正負性決定。

  則不

  (3)計算順序:先算數值后定符號且,解集為;若且等式的解集為;若則不等式的解集為;

  4、將一元一次不等式的解集在數軸上表示出來,是數學中數形結合思想的重要體現,要注意的是“三定”:一是定邊界點,二是定方向,三是定空實。

  5、用一元一次不等式解答實際問題,關鍵在于尋找問題中的不等關系,從而列出不等式并求出不等式的解集,最后解決實際問題。

  6、常見不等式的基本語言的意義:

  (1)(3)(5)(7),則x是正數;

  (2),則x是非正數;

  (4),則x大于y;

  (6),則x不小于y;

  (8),則x是負數;,則x是非負數;,則x小于y;,則x不大于y;

  (9)或,則x,y同號;

  (10)或,則x,y異號;

  (11)x,y都是正數,若,則;若,則;

  (12)x,y都是負數,若,則;若,則

  第十二章證明

  教學目標:

  1.掌握定義、命題、定理、逆命題、互逆命題等概念,知道一個命題是真命題,它的逆命題不一定是真命題。

  2.基本事實是其真實性不加證明的真命題,弄清真命題與定理的區別。

  3.會用舉反例說明一個命題是假命題;掌握三角形內角和定理的證明。重點:定義、命題、定理、逆命題、互逆命題等概念的理解與運用

  難點:會用舉反例說明一個命題是假命題;掌握三角形內角和定理的證明。內容:

  1.以基本事實:“同位角相等,兩直線平行”證明:

  (1)“內錯角相等,兩直線平行”、“同旁內角互補,兩直線平行”、“平行于同一條直線的兩條直線平行”

  2.基本事實:“過直線外一點,有且只有一條直線與這條直線平行”“兩直線平行,同位角相等”證明:

  (1)兩只相平行,內錯角相等

  (2)兩只相平行,同旁內角互補

  (3)三角形內角和定理”

  (4)直角三角形的兩個銳角互余

  (5)有兩個銳角互余的三角形是直角三角形

  (6)三角形的外角等于與它不相鄰的兩個外角的和

中考數學知識點總結11

  1.如果把解題比做打仗,那么解題者的“兵器”就是數學基礎知識,“兵力”就是數學基本方法,而調動數學基礎知識、運用數學思想方法的數學解題思想則正是“兵法”。

  2.數學家存在的主要理由就是解決問題。因此,數學的真正的組成部分是問題和解答。“問題是數學的心臟”。

  3.問題反映了現有水平與客觀需要的矛盾,對學生來說,就是已知和未知的矛盾。問題就是矛盾。對于學生而言,問題有三個特征:

  (1)接受性:學生愿意解決并且具有解決它的知識基礎和能力基礎。

  (2)障礙性:學生不能直接看出它的解法和答案,而必須經過思考才能解決。

  (3)探究性:學生不能按照現成的的套路去解,需要進行探索,尋找新的處理方法。

  4.練習型的問題具有教學性,它的結論為數學家或教師所已知,其之成為問題僅相對于教學或學生而言,包括一個待計算的答案、一個待證明的結論、一個待作出的圖形、一個待判斷的命題、一個待解決的實際問題。

  5.“問題解決”有不同的解釋,比較典型的觀點可歸納為4種:

  (1)問題解決是心理活動。面臨新情境、新課題,發現它與主客觀需要的矛盾而自己卻沒有現成對策時,所引起的尋求處理辦法的一種活動。

  (2)問題解決是一個探究過程。把“問題解決”定義為“將先前已獲得的知識用于新的、不熟悉的情境的過程”。這就是說,問題解決是一個發現的過程、探索的過程、創新的過程。

  (3)問題解決是一個學習目的。“學習數學的主要目的在于問題解決”。因而,學習怎樣解決問題就成為學習數學的根本原因。此時,問題解決就獨立于特殊的問題,獨立于一般過程或方法,也獨立于數學的具體內容。

  (4)問題解決是一種生存能力。重視問題解決能力的培養、發展問題解決的能力,其目的之一是,在這個充滿疑問、有時連問題和答案都是不確定的世界里,學習生存的本領。

  6.解題研究存在一些誤區,首先一個表現是,用現成的例子說明現成的觀點,或用現成的`觀點解釋現成的例子。其次一個表現是,長期徘徊在一招一式的歸類上,缺少觀點上的提高或實質性的突破。第三個表現是,多研究“怎樣解”,較少問“為什么這樣解”。在這些誤區里,“解題而不立法、作答而不立論”。

  7.人的思維依賴于必要的知識和經驗,數學知識正是數學解題思維活動的出發點與憑借。豐富的知識并加以優化的結構能為題意的本質理解與思路的迅速尋找創造成功的條件。解題研究的一代宗師波利亞說過:“貨源充足和組織良好的知識倉庫是一個解題者的重要資本”。

  8.熟練掌握數學基礎知識的體系。對于中學數學解題來說,應如數學家珍說出教材的概念系統、定理系統、符號系統。還應掌握中學數學競賽涉及的基礎理論。深刻理解數學概念、準確掌握數學定理、公式和法則。熟悉基本規則和常用的方法,不斷積累數學技巧。

  9.數學的本質活動是思維。思維的對象是概念,思維的方式是邏輯。當這種思維與新事物接觸時,將出現“相容”和“不容”的兩種可能。出現“相容”時,產生新結果,且被原概念吸收,并發展成新概念;當出現“不容”時,則產生了所謂的問題。這時,思維出現迂回,甚至暫時退回原地,將原概念擴大或將原邏輯變式,直到新思維與事物相容為止。至此,也產生新的結果,也被原思維吸收。這就是一個思維活動的全過程。

  10.解題能力,表現于發現問題、分析問題、解決問題的敏銳、洞察力與整體把握。其主要成分是3種基本的數學能力(運算能力、邏輯思維能力、空間想象能力),核心是能否掌握正確的思維方法,包括邏輯思維與非邏輯思維。其基本要求包括:

  (1)掌握解題的科學程序;

  (2)掌握數學中各種常用的思維方法,如觀察、試驗、歸納、演繹、類比、分析、綜合、抽象、概括等;

  (3)掌握解題的基本策略,能“因題制宜”地選擇對口的解題思路,使用有效的解題方法、調動精明的解題技巧;

  (4)具有敏銳的直覺。應該明白,我們的數學解題活動是在縱橫交錯的數學關系中進行的,在這個過程中,我們從一種可能性過渡到另一種可能性時,并非對每一個數學細節都洞察無遺,并非總能借助于“三段論”的橋梁,而是在短時間內朦朧地插上幻想的翅膀,直接飛翔到最近的可能性上,從而達到對某種數學對象的本質領悟:

  11.解題具有實踐性與探索性的特征,“就像游泳,滑雪或彈鋼琴一樣,只能通過模仿和實踐來學到它……你想學會游泳,你就必須下水,你想成為解題的能手,你就必須去解題”,“尋找題解,不能教會,而只能靠自己學會”。

  12.所謂解題經驗,就是某些數學知識、某些解題方法與某些條件的有序組合。成功是一種有效的有序組合,失敗是一種無效的無序組合(它從反面向我們提供有效的有序組合)。成功經驗所獲得的有序組合,就好像建筑上的預制構件(或稱為思維組塊),遇到合適的場合,可以原封不動地把它搬上去。

  13.認為解題純粹是一種智能活動顯然是錯誤的;決心與情緒所起的作用非常重要。教育學生解題是一種意志教育。當學生求解那些對他來說并不太容易的題目時,他學會了敗而不餒,學會了贊賞微小的進展,學會了等待主要念頭的萌動,學會了當主要念頭出現后如何全力以赴,直撲問題的核心或主干;當一旦突破關卡,如何去占領問題的至高點,并冷靜地府視全局,從而得到問題的完善解決。如果學生在解題過程中沒有機會嘗盡為求解而奮斗的喜怒哀樂,那么他的數學解題訓練就在最重要的地方失敗了。

  14.教師的例題教學要暴露自己思維的真實過程,老師備課時,遇上的曲折和錯誤不能隨草紙扔到廢紙堆。如果教師掩瞞了解題中的曲折,自己在講臺裝神弄巧,得心應手,左右逢源,把自己打扮成超人,將給學生的學習產生誤導。這樣的教師越高明,學生越自卑。

中考數學知識點總結12

  圓的定理:

  1不在同一直線上的三點確定一個圓。

  2垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧

  推論1①平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧

  ②弦的垂直平分線經過圓心,并且平分弦所對的兩條弧

  ③平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條弧

  推論2圓的兩條平行弦所夾的弧相等

  3圓是以圓心為對稱中心的中心對稱圖形

  4圓是定點的距離等于定長的點的集合

  5圓的內部可以看作是圓心的距離小于半徑的點的集合

  6圓的外部可以看作是圓心的距離大于半徑的點的集合

  7同圓或等圓的半徑相等

  8到定點的距離等于定長的點的軌跡,是以定點為圓心,定長為半徑的圓

  9定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等

  10推論在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應的其余各組量都相等

  中考數學知識點復習口訣

  有理數的加法運算

  同號相加一邊倒;異號相加“大”減“小”,

  符號跟著大的跑;絕對值相等“零”正好。

  合并同類項

  合并同類項,法則不能忘,只求系數和,字母、指數不變樣。

  去、添括號法則

  去括號、添括號,關鍵看符號,

  括號前面是正號,去、添括號不變號,

  括號前面是負號,去、添括號都變號。

  一元一次方程

  已知未知要分離,分離方法就是移,加減移項要變號,乘除移了要顛倒。

  平方差公式

  平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。

  完全平方公式

  完全平方有三項,首尾符號是同鄉,首平方、尾平方,首尾二倍放中央;

  首±尾括號帶平方,尾項符號隨中央。

  因式分解

  一提(公因式)二套(公式)三分組,細看幾項不離譜,

  兩項只用平方差,三項十字相乘法,陣法熟練不馬虎,

  四項仔細看清楚,若有三個平方數(項),

  就用一三來分組,否則二二去分組,

  五項、六項更多項,二三、三三試分組,

  以上若都行不通,拆項、添項看清楚。

  單項式運算

  加、減、乘、除、乘(開)方,三級運算分得清,

  系數進行同級(運)算,指數運算降級(進)行。

  一元一次不等式解題步驟

  去分母、去括號,移項時候要變號,同類項合并好,再把系數來除掉,

  兩邊除(以)負數時,不等號改向別忘了。

  一元一次不等式組的解集

  大大取較大,小小取較小,小大、大小取中間,大小、小大無處找。

  一元二次不等式、一元一次絕對值不等式的解集

  大(魚)于(吃)取兩邊,小(魚)于(吃)取中間。

  分式混合運算法則

  分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);

  乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;

  加減分母需同,分母化積關鍵;找出最簡公分母,通分不是很難;

  變號必須兩處,結果要求最簡。

  中考數學知識點歸納:平面直角坐標系

  平面直角坐標系

  1、平面直角坐標系

  在平面內畫兩條互相垂直且有公共原點的.數軸,就組成了平面直角坐標系。

  其中,水平的數軸叫做x軸或橫軸,取向右為正方向;鉛直的數軸叫做y軸或縱軸,取向上為正方向;兩軸的交點O(即公共的原點)叫做直角坐標系的原點;建立了直角坐標系的平面,叫做坐標平面。

  為了便于描述坐標平面內點的位置,把坐標平面被x軸和y軸分割而成的四個部分,分別叫做第一象限、第二象限、第三象限、第四象限。

  注意:x軸和y軸上的點,不屬于任何象限。

  2、點的坐標的概念

  點的坐標用(a,b)表示,其順序是橫坐標在前,縱坐標在后,中間有“,”分開,橫、縱坐標的位置不能顛倒。平面內點的坐標是有序實數對,當時,(a,b)和(b,a)是兩個不同點的坐標。

中考數學知識點總結13

  把一個數寫做的形式,其中,n是整數,這種記數法叫做科學記數法。

  (1)確定:是只有一位整數數位的數.

  (2)確定n:當原數≥1時,等于原數的整數位數減1;;當原數<1時,是負整數,它的絕對值等于原數中左起第一個非零數字前零的個數(含整數位上的`零)。

  例如:-40700=-4.07×105,0.000043=4.3×10ˉ5.

  (3).近似值的精確度:一般地,一個近似數,四舍五入到哪一位,就說這個近似數精確到哪一位

  (4)按精確度或有效數字取近似值,一定要與科學計數法有機結合起來.

中考數學知識點總結14

  (1)凡能寫成 形式的數,都是有理數.正整數、0、負整數統稱整數;正分數、負分數統稱分數;整數和分數統稱有理數.注意:0即不是正數,也不是負數;-a不一定是負數,+a也不一定是正數;p不是有理數;

  (2)有理數的分類: ① 整數 ②分數

  (3)注意:有理數中,1、0、-1是三個特殊的數,它們有自己的特性;這三個數把數軸上的數分成四個區域,這四個區域的數也有自己的特性;

  (4)自然數 0和正整數;a0 a是正數;a0 a是負數;

  a≥0 a是正數或0 a是非負數;a≤ 0 ? a是負數或0 a是非正數.

  有理數比大小:

  (1)正數的`絕對值越大,這個數越大;

  (2)正數永遠比0大,負數永遠比0小;

  (3)正數大于一切負數;

  (4)兩個負數比大小,絕對值大的反而小;

  (5)數軸上的兩個數,右邊的數總比左邊的數大;

  (6)大數-小數 0,小數-大數 0.

中考數學知識點總結15

  第十一章:全等三角形復習

  一全等三角形

  1、什么是全等三角形?一個三角形經過哪些變化可以得到它的全等形?能夠完全重合的兩個三角形叫做全等三角形。一個三角形經過平移、翻折、旋轉可以得到它的全等形。

  2、全等三角形有哪些性質?

  (1):全等三角形的對應邊相等、對應角相等。

  (2):全等三角形的周長相等、面積相等。

  (3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。

  3、一般三角形全等的條件(包括直角三角形):(1)定義(重合)法;

  (2)SSS:三邊對應相等的兩個三角形全等;

  (3)SAS:兩邊和它們的夾角對應相等兩個三角形全等;

  (4)ASA:兩角和它們的夾邊對應相等的兩個三角形全等;

  (5)AAS:兩角和其中一角的對邊對應相等的兩個三角形全等。解題常用后面四種方法。直角三角形全等特有的條件:HL(斜邊和一條直角邊對應相等的兩個直角三角形全等)。

  4、證明兩個三角形全等的基本思路:

  (1)已知兩邊:a、找第三邊(SSS);b、找夾角(SAS);c、找是否有直角(HL)。

  (2)已知一邊一角:①已知一邊和他的鄰角:a、找這邊的另一個鄰角(ASA);b、找這個角的另一個邊(SAS);c、找這邊的對角(AAS)。

  ②已知兩角:a、找兩角的夾邊(ASA);b、找夾邊外的任意邊(AAS)。

  二角平分線

  1、角平分線的性質:角的平分線上的點到角的兩邊的距離相等。

  2、角平分線的判定:角的內部到角的兩邊的距離相等的'點在角的平分線上。

  用法1:∵ QD⊥OA,QE⊥OB用法2:∵ QD⊥OA,QE⊥OB,QD=QE。

  ∴點Q在∠AOB的平分線上。 ∴點Q在∠AOB的平分線上

  ∴ QD=QE

  3、總結提高:學習全等三角形應注意以下幾個問題

  (1)要正確區分“對應邊”與“對邊”,“對應角”與“對角”的不同含義;

  (2)表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;

  (3)要記住“有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;

  (4)時刻注意圖形中的隱含條件,如“公共角” 、“公共邊”、“對頂角”。

  練習:

  練習1:如圖,D在AB上,E在AC上,AB=AC ,∠B=∠C,試問AD=AE嗎?

  2、如圖,OB⊥AB,OC⊥AC,垂足為B,C,OB=OC,AO平分∠BAC嗎?

  3、如圖,小明不慎將一塊三角形模具打碎為兩塊,他是否可以只帶其中的一塊碎片到商店去,就能配一塊與原來一樣的三角形模具呢?如果可以,帶那塊去合適?為什么?

  4、如圖,已知AC∥EF,DE∥BA,若使△ABC≌△EDF,還需要補

  充的條件可以是

  5、已知AC=DB, ∠1=∠2.求證: ∠A=∠D

  6、如圖,已知,AB∥DE,AB=DE,AF=DC。請問圖中有那幾對全等三角形?請任選一對給予證明。

  7、如圖,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD嗎?為什么?

  8、已知,△ABC和△ECD都是等邊三角形,且點B,C,D在一條直線上求證:BE=AD

  9、求證:有一條直角邊和斜邊上的高對應相等的兩個直角三角形全等。

  10、將紙片△ABC沿DE折疊,點A落在點F處,已知∠1+∠2=100°,則∠A=度;

  11、如圖6,已知:∠A=90°,AB=BD,ED⊥BC于D.求證:AE=ED

  三軸對稱

  1、把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。

  2、把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線叫做對稱軸。折疊后重合的點是對應點,叫做對稱點。

  3、軸對稱的性質:①關于某直線對稱的兩個圖形是全等形。

  ②如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。

  ③軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。

  ④如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。

  4、線段的垂直平分線:經過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。

  性質:線段垂直平分線上的點與這條線段的兩個端點的距離相等(純粹性)。

  逆定理:與一條線段兩個端點距離相等的點,在線段的垂直平分線上。(完備性)

  線段垂直平分線的集合定義:線段垂直平分線可以看作是與線段兩個端點距離相等的所有點的集合。

  5、用坐標表示軸對稱小結:

  在平面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數.關于y軸對稱的點橫坐標互為相反數,縱坐標相等。

  利用軸對稱變換作圖:要在燃氣管道L上修建一個泵站,分別向A、B兩鎮供氣,泵站修在管道什么地方,可使所用的輸氣管道線最短?

  6、等腰三角形

  1.等腰三角形的性質

  ①.等腰三角形的兩個底角相等。(等邊對等角)

  ②.等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)

  2、等腰三角形的判定:

  如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)。

  7、等邊三角形

  (1)等邊三角形的性質:等邊三角形的三個角都相等,并且每一個角都等于600 。

  (2)等邊三角形的判定:

  ①三個角都相等的三角形是等邊三角形。②有一個角是60度的等腰三角形是等邊三角形。

  (3)在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。

  練習1:在△ABC中,AB=AC時,(1)∵AD⊥BC

  ∴∠ ____= ∠_____;____=____

  (2) ∵AD是中線

  ∴____⊥____; ∠_____= ∠_____

  (3) ∵ AD是角平分線

  ∵____ ⊥____;_____=____

  2、如圖1,AD是△ABC的角平分線,BE⊥AD交AD的延長線于E,EF∥AC交AB于F,求證:AF=FB.

  3、某等腰三角形的兩條邊長分別為3 cm和6 cm,則它的周長為:

  4、等腰三角形的一個角為30°,則底角為___________.

  5、已知:如圖5,AB=AC,BD⊥AC.求證:∠DBC=1/2∠A。

  6、如圖6,在△ABC中,AB=AC,在AB上取一點E,在AC延長線上取一點F,使BE=CF,EF交BC于G,EM∥CF.求證:EG=FG.

  第十四章整式和因式分解

  一、冪的4個運算性質

  1、同底數冪的乘法:am · an = am+n

  2、同底數冪的除法:am÷an =am-n;a0=1(a≠0)

  3、冪的乘方: (am )n = amn

  4、積的乘方: (ab)n = anbn

  如:(1)(-1)20xx+π0= (x-3)x+2=1,求x.

  (2)若10x=5,10y=4,求102x+3y-1的值.

  (3)計算:0.251000×(-2)20xx

  二、乘法公式

  1、平方差公式:(a+b)(a-b)=a2-b2

  2、完全平方公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2

  3、三數和的平方公式:(a+b+c)2=a2+b2 +c2+2ab+2ac+2bc

  計算:(3x+4)(3x-4)-(2x+3)(3x-2)

  (1-x)(1+x)(1+x2)(1-x4)

  (x+4y-6z)(x-4y+6z)

  (x-2y+3z)2

  簡便計算:(1)98×102

  (2)2992

  (3) 20062-20xx×20xx

  活學活用:已知a+b=5,ab= -2,求(1)a2+b2(2)a-b

  三、因式分解

  因式分解方法:一提二套三看

  一提:提公因式提負號

  二套:套平方差、完全平方、十字相乘法

  三看:看是否分解完全。

  如:x5-16x -4a 2+4ab- b 2 m 2(m-2)-4m(2-m) 4a2- 16(a-2) 2

  a、多項式x2-4x+4、x2-4的公因式是

  b、已知x2-2mx+16是完全平方式則m為

  c、已知x2-8x+m是完全平方式,則m=

  d、已知x2-8x+m2是完全平方式,則m=

  e、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=

  f、如果(a2 +b2 )(a2 +b2 -1)=20,那么a2 +b2 =_____

  簡便計算:(-2)20xx+(-2)20xx

  20xx+20052-20062

  3992+399

【中考數學知識點總結】相關文章:

中考數學圓知識點總結01-13

中考數學知識點03-15

中考數學必考知識點03-12

中考數學知識點歸納總結優秀05-08

2018中考數學知識點總結12-31

中考數學重點知識點歸納04-26

中考數學知識點精選(3篇)05-08

中考物理的知識點總結12-31

中考物理知識點總結02-20

主站蜘蛛池模板: 浦城县| 额尔古纳市| 册亨县| 白河县| 萍乡市| 富顺县| 阿克陶县| 武城县| 乌什县| 宁城县| 揭西县| 资中县| 海南省| 德兴市| 西青区| 乌兰察布市| 亳州市| 青阳县| 科技| 新竹市| 阿图什市| 凭祥市| 井冈山市| 额济纳旗| 海安县| 买车| 惠来县| 阿城市| 南投市| 蒲城县| 凤凰县| 霍邱县| 平塘县| 开封县| 涞水县| 贡嘎县| 宜昌市| 文水县| 永川市| 大庆市| 麻江县|